
CS51 2024 Midterm 2 Answer Key

This answer key provides possible answers to the midterm, with discussion of their
basis and alternatives. It is not intended to be an exhaustive discussion of the
questions. There may be other answers that would get full credit, and not all issues
that might affect grading are discussed.

Q2.1: True. Tail-recursive functions, and all recursive functions, require the rec
keyword. On the other hand, there’s a usage of “tail-recursive” by which a non-
recursive function whose computation involves calling recursive functions may be
deemed tail-recursive if the embedded calls are all to tail-rcursive functions. In such
a case, no rec keyword is needed since the function is not dirctly recursive. We
therefore gave full credit for both possible answers.

Q2.2: True. Type inference reconstructs the types, so that type annotations are
not required. They may be helpful, however, for the purpose of expressing the
programmer’s intention to facilitate finding bugs.

Q2.3: False. Constructors declared in variant types can have arguments, which are
specified using of. A simple example is the color type from lab 5.

type color =
| Simple of color_label
| RGB of int * int * int ;;

Both constructors Simple and RGB take an argument.

Q2.4: False. The value in a lazy expression such as lazy (1 + 1) is computed at
its first use, and then cached so is not reevaluated thereafter. At the time the value
is declared, the value remains unevaluated, and indeed may never be evaluated if
the expression is never forced.

Q2.5: False. Although looping expressions are used solely for their side effects, like
all OCaml expressions, they do return a value, namely the unit value ().

Q2.6: True. The reference ref 42 has type int ref, and like all expressions cannot
change its type.

let r = ref 42 ;;
val r : int ref = {contents = 42}
r := 21 ;;
- : unit = ()
r := true ;;
Error: This expression has type bool but an expression was expected of type

int

Q2.7: False. OCaml doesn’t provide a specific type for streams. Rather, streams
can be implemented as user code, as done in the NativeLazyStreams module
reproduced in Q4 of this exam.

Q2.8: False. The substitution yields the expression 37 + 5, not 42.

Q2.9: False. The free variables in the expression are f, y, and z, and the FV
definition would reflect that.

1

2

Q3.1: We wrap the condition and body in unit functions.

let rev xs =
let xs = ref xs in
let accum = ref [] in
(while_ (fun () -> !xs <> [])

(fun () ->
accum := (List.hd !xs) :: !accum;
xs := List.tl !xs));

!accum ;;

Some submissions named the delayed condition and body:

let rev xs =
let xs = ref xs in
let accum = ref [] in
let condition = fun () -> !xs <> [] in
let body = fun () ->

(accum := (List.hd !xs) :: !accum;
xs := List.tl !xs) in

while_ condition body;
!accum ;;

That works too.

Q3.2: We replace the iteration of the while loop with recursion. Note the forcing
of the condition and body by applying to ().

let rec while_ (condition : unit -> bool) (body : unit -> unit) : unit =
if condition () then

(body ();
while_ condition body) ;;

It’s a bit inelegant to have to keep providing the same two arguments in each
recursive call. An alternative is to define an auxiliary function that can refers to
the arguments in the outer while_ definition.

let while_ (condition : unit -> bool) (body : unit -> unit) : unit =
let rec while' () =

if condition () then
(body ();
while' ()) in

while' () ;;

In these implementations, the if doesn’t need an else, as the conditional re-
turns a unit, although adding else () would still be a correct, if less idiomatic,
implementation.

Q3.3: Implementing while_ in terms of while merely requires forcing the condition
and body when needed.

let while_ condition body =
while condition () do

body ()

3

done ;;

Q3.4: It is not possible to implement the delaying needed in the while_ function
using OCaml’s Lazy module. Because delayed values built using lazy are memoized,
they are not evaluated each time they are forced. Thus, the condition will be
evaluated only and exactly once. If it evalutes to true, on each later evaluation
it will return true, and the loop will never end. Similarly, the body will only be
evaluated once, not each time through the loop, so the intended side effects from
the subsequent evaluations will not be generated.

We can test this by replacing the function delaying in the definition above.

let while_ condition body =
while (sLazy.force condition) do

Lazy.force body
done ;;

let rev xs =
let xs = ref xs in
let accum = ref [] in
(while_ (lazy (!xs <> []))

(lazy
(accum := (List.hd !xs) :: !accum;
xs := List.tl !xs)));

!accum ;;

Using rev with this while_ definition, we end up in an infinite loop that requires
an ungraceful exit.

rev [1; 2; 3; 4] ;;
^CInterrupted.
#

Q4.1: There are multiple approaches that will work. Here is perhaps the simplest.

let rec stream_of x =
lazy (Cons (x, stream_of x)) ;;

Another thought is to make use of ones, and multiply each element by x:

let rec ones = lazy (Cons (1, ones)) ;;
let stream_of x =

smap ((*) x) ones ;;

but this is not polymorphic.

Q4.2: Here, we start with 0 and then add n to the every_nth stream.

let rec every_nth (n : int) : int stream =
lazy (Cons (0, smap ((+) n) (every_nth n))) ;;

The mapping approach that was insufficient for Q4.1 works here, since the solution
is inherently monomorphic. We can multiply the nats stream by the argument n.

4

let rec nats =
lazy (Cons (0, smap succ nats)) ;;

let every_nth (n : int) : int stream =
smap ((*) n) nats ;;

Q5.1:

let listarr = [ref 0; ref 5; ref 10] ;;

Q5.2:

let update (listarr : 'a ref list) (index : int) (new_value : 'a) : unit =
(List.nth listarr index) := new_value ;;

We don’t need to raise the exceptions, because, thankfully, List.nth does that for
us, as depicted in the next problem (Q5.3).

Q5.3: The interpreter tells us the type of the function, namely, 'a list -> int
-> 'a:

let rec nth lst index =
if index < 0 then raise (Invalid_argument "nth")
else

match lst with
| [] -> raise (Failure "nth")
| hd :: tl -> if index = 0 then hd else nth tl (pred index) ;;

val nth : 'a list -> int -> 'a = <fun>

Q5.4: The recursion through the list will extend in the worst case to the very end
of the list. The function is thus linear, O(n).

Q5.5: For long enough sequences, implementing them with arrays will provide for
more time-efficient indexing than implementing them with reference lists.

Q6.1: All of the information can be inherited from the library_item_type except
for get_runtime, which we add to the class type.

class type dvd_type =
object

inherit library_item_type
method get_runtime : int

end ;;

Q6.2: Again, almost everything can be inherited from the library_item class.
We need to add get_runtime and override get_details, which can augment the
get_details result from the superclass.

class dvd (title : string) (id : string) (runtime : int) : dvd_type =
object

inherit library_item title id as super
val runtime : int = runtime
method get_runtime : int = runtime
method! get_details : string =

"DVD " ^ super#get_details ^ ", Runtime: " ^ (string_of_int runtime) ^ " minutes"
end;;

5

Q6.3: Only one line needs to be added to the library_item_type class type to
specify the print_details method.

class type library_item_type =
object

method get_title : string
method get_id : string
method get_details : string
method print_details : unit

end ;;

Q6.4: Only one line needs to be added to the library_item class to implement
the print_details method, which just uses get_details to generate the details
to be printed.

class library_item (title : string) (id : string) : library_item_type =
object (this)

val title : string = title
val id : string = id
method get_title : string = title
method get_id : string = id
method get_details : string = "Title: " ^ title ^ ", ID: " ^ id
method print_details : unit = print_endline (this#get_details)

end ;;

Q6.5: If the library_item_type code is modified as above, no changes are needed
to the dvd_type code. It will continue to inherit the needed methods, including
print_details.

Q6.6: If the library_item code is modified as above, no changes are needed to the
dvd code. It will continue to inherit the needed methods, including print_details.
That’s the payoff of inheritance.

Q7.1:

let x = ref 42 in x

Q7.2:

let x = ref (fun y -> y) in x

Q7.3:

let f = fun y -> x + y in
let x = 42 in
x

Q7.4:

let x = ref (let x = 42 in fun y -> x + y) in x

or

let x = 42 in let x = ref (fun y -> x + y) in x

	CS51 2024 Midterm 2 Answer Key
	Q2.1:
	Q2.2:
	Q2.3:
	Q2.4:
	Q2.5:
	Q2.6:
	Q2.7:
	Q2.8:
	Q2.9:
	Q3.1:
	Q3.2:
	Q3.3:
	Q3.4:
	Q4.1:
	Q4.2:
	Q5.1:
	Q5.2:
	Q5.3:
	Q5.4:
	Q5.5:
	Q6.1:
	Q6.2:
	Q6.3:
	Q6.4:
	Q6.5:
	Q6.6:
	Q7.1:
	Q7.2:
	Q7.3:
	Q7.4:

