
0/27 Questions Answered



Midterm Exam 1

Q1 Instructions and affirmation
0 Points

Before beginning this exam, make sure you have read and 
understood the exam instructions that were distributed ahead of 
the exam and are available at https://url.cs51.io/exam-instructions, 
and check the boxes below.

Save Answer

Q2 Further details
0 Points

Throughout this exam, for the purpose of writing your 
answers, you can assume that the Stdlib  and List  modules 
have already been opened for you.

Save Answer

Student Name

Search students by name or email… 

I have read and understood the exam instructions that
were distributed ahead of the exam.

I affirm my awareness of the standards of the Harvard
College Honor Code.

https://url.cs51.io/exam-instructions
https://url.cs51.io/exam-instructions
https://url.cs51.io/exam-instructions


Q3 Finger exercises
7 Points

Each of the expressions below contains a single blank (shown 
as an underline "____"). Your job is to fill in the blank with a 
single expression that is well-formed and well-typed in context, 
such that the expression as a whole evaluates to 42 . (For the 
purpose of this problem, you can ignore any warnings 
generated.) 

If such an expression exists, select "This expression" and in the 
text box provide an appropriate expression to fill in the blank. 
If no such expression exists, select the option "No such 
expression" and leave the text block blank. (If you select "No 
such expression" but also fill in the text block, we'll ignore the 
latter.)

For instance, in the example

let x = _______ in
x + 40 ;;

you would check the "This expression" option and provide the
expression

2

or 

3 - 1

or any of a wide variety of other expressions that would work.



Q3.1
1 Point

6 * _______ ;;

Save Answer

Q3.2
1 Point

map ________ [1; 42; 1] ;;

Save Answer

No such expression

This expression:

No such expression

This expression:



Q3.3
1 Point

let x = 42 in
let y = 7 in
let ________ = x in
y ;;

Save Answer

Q3.4
1 Point

let x : bool -> int = ________ in 42 ;;

Save Answer

No such expression

This expression:

No such expression

This expression:



Q3.5
1 Point

let f x = x * x - x in f ________ ;;

Save Answer

Q3.6
1 Point

42 |> ________ |> ((+) 2) ;;

Save Answer

No such expression

This expression:

No such expression

This expression:



Q3.7
1 Point

let ________ = Some 42 in x ;;

Save Answer

No such expression

This expression:



Q4 Finding elements in a list
12 Points

The problems in this section concern a polymorphic function 
findafter  that takes a condition and a list and returns the 
remainder of the list starting with the first element for which 
the condition returns true . For example,

# findafter (fun x -> x > 7) [1; 3; 5; 7; 9; 11] ;;
- : int list = [9; 11]

# let is_even n = n mod 2 = 0 in
  findafter is_even [1; 3; 7; 2; 5; 4; 4] ;;
- : int list = [2; 5; 4; 4]

# findafter (fun x -> x) [false; false; true; false; true; false] ;;
- : bool list = [true; false; true; false]

If no element satisfies the condition, findafter  should raise an 
appropriate exception.

You may code the function directly or use higher-order 
functions in the map/fold/filter style.

Q4.1
2 Points

What is the type of findafter ?

Save Answer



Q4.2
6 Points

Define the findafter  function.

Save Answer

Q4.3
2 Points

What is the length of the shortest list that the findafter  
function can return?

Save Answer

0

1

2

None of the above



Q4.4
2 Points

We define a new function called mystery  as follows:

let mystery x = 
  match x with
  | [] -> []
  | _ -> findafter (fun x -> true) x

Describe the behavior of the mystery  function in as simple a 
form as possible.

Save Answer



Q5 Zipping and unzipping
20 Points

In this section, you'll implement some functions related to the 
zip  function from lab 4, repeated here for your reference:

let rec zip (x : 'a list) (y : 'b list) : ('a * 'b) list =
  match x, y with
  | [], [] -> []
  | xhd :: xtl, yhd :: ytl -> (xhd, yhd) :: (zip xtl ytl) ;;

This version of zip  has the problem that it doesn't handle 
unequal length lists well: It generates an inexhaustive match 
warning at compile time and it raises a match failure exception 
at run time when applied to lists of unequal lengths.

Q5.1
4 Points

Define a new version of zip  that 

1. generates no inexhaustive match warnings, and 
2. raises a more appropriate run-time exception when applied

to lists of unequal lengths.

Save Answer



Q5.2
6 Points

Another way of handling unequal length lists is to provide for a 
default value that is used to pad the end of the shorter list to 
make it the length of the longer list. Define a function 
zip_default : 'a -> 'a list -> 'a list -> ('a * 'a) list  that works 
in this way. Here are some examples of its use:

# zip_default 0 [1; 3; 5] [2; 4; 6; 8; 10] ;;
- : (int * int) list = [(1, 2); (3, 4); (5, 6); (0, 8); (0, 10)]
# zip_default true [false; true] [] ;;
- : (bool * bool) list = [(false, true); (true, true)]

Save Answer

Q5.3
2 Points

Notice that the types of the two list arguments for zip  are 
(respectively) 'a list  and 'b list , and the types of the two list 
arguments for zip_default  are (respectively) 'a list  and 
'a list . Why this difference? Provide a succinct explanation; a 
sentence or two should suffice. Overlong, disjunctive, or hedged 
answers will be discounted.

Save Answer



Q5.4
2 Points

Now consider a polymorphic function unzip  that is the opposite of zip . 
It takes a list of pairs and returns a pair of lists that when zipped give 
the original list. Here are some examples of its use:

# unzip [(3,true); (4, false); (5, false)] ;;
- : int list * bool list = ([3; 4; 5], [true; false; false])

# unzip (zip [false; true; false; false] [1; 2; 3; 4]) ;;
- : bool list * int list = ([false; true; false; false], [1; 2; 3; 4])

What is the type of unzip ?

Save Answer

Q5.5
6 Points

Now provide a definition for unzip .

Save Answer



Q6 Recipe measurements
12 Points

In the next few problems, you'll develop a way to specify 
recipes and perform calculations over them. Here are some 
type definitions related to recipes. (We've left off the definition 
of the measure  type.)

(* unit_ -- The type of measurement units *)
type unit_ = Cup | Ounce | Tablespoon | Teaspoon ;;

(* ingredient -- Names for ingredients *)
type ingredient = string ;;

(* measure -- The type for quantities of an ingredient, either as a 
   count (2 apples, say) or a measurement (1.5 cups of water). *)
type measure =
  ___________________________

Q6.1
2 Points

Why do you think we chose the name unit_  (with a trailing 
underline) for the type for measurement units, rather than the 
simpler type name unit ?

Save Answer



Q6.2
4 Points

The following list of ingredients is based on a guacamole recipe 
from Spruce Eats
   (https://www.thespruceeats.com/best-simple-guacamole-recipe-
7507237). *)

let guacamole = [
  Count (2, "ripe avocados");
  Measure (0.25, Cup, "diced onions");
  Count (1, "garlic clove");
  Count (1, "small serrano chile, minced");
  Measure (1., Tablespoon, "lime juice");
  Measure (1., Teaspoon, "salt");
  Measure (0.125, Teaspoon, "ground cumin");
  Measure (0.25, Cup, "packed coarsely chopped fresh cilantro")
] ;;

Based on this example, you should have enough information to 
provide a definition of the measure  type. Provide that definition 
here:

Save Answer

https://www.thespruceeats.com/best-simple-guacamole-recipe-7507237


Q6.3
6 Points

Define a function ounces : measure list -> float  that takes a list 
of ingredients and returns the total number of ounces of all of 
the measured ingredients. (The "counted" ingredients should 
be ignored, that is, treated as contributing 0 ounces.) For your 
reference, conversions with ounces are as follows:

6 teaspoons per ounce
2 tablespoons per ounce
8 ounces per cup

For instance,

# ounces guacamole ;;
- : float = 4.6875

Save Answer



Q7 Bit sequences
23 Points

In the next few problems, you'll develop an abstract data type 
for bit sequences. Bit sequences can be manipulated by 
performing bit operations on them, operations like logical 
"and", "or", "xor", and "not". These bit operations act on two bit 
sequences of the same length by applying the logical 
operations to corresponding bits. For instance, consider the 
two bit sequences 0 1 1 0 1 and 1 0 1 1 1. The "and" of these 
two bit sequences is the bit sequence 0 0 1 0 1. The "xor" of 
these two bit sequences is 1 1 0 1 0. 

      0 1 1 0 1           0 1 1 0 1
 and  1 0 1 1 1      xor  1 0 1 1 1
 --------------      --------------
      0 0 1 0 1           1 1 0 1 0     

There is a natural interpretation of bit sequences as integers as 
well: we just consider them as bits in the binary representation 
of the integer. For the purposes of these problems, we'll think 
of the bits as being ordered from least to most significant bits. 
(That's the opposite order from how we usually write down 
binary numbers, but it makes the code easier.) So the 
representation of the number 4 as a bit sequence would be 0 0 
1 (and not 1 0 0). Note that we can always add some zeroes at 
the end of the bit sequence without changing the number 
represented, so 4 can also be represented by the bit sequence 
0 0 1 0 or 0 0 1 0 0 0, etc. This comes in handy when we need to 
make two bit sequences the same length so as to perform bit 
operations on them.

We've given you a major start on such a module. In this 
implementation, bit sequences are represented by lists of 
integers obeying some invariants:

Each integer is either 0 or 1.
The bits are provided from least to most significant, so the integer 4 



(100 in binary) would be represented by the list [0; 0; 1]  (or 
[0; 0; 1; 0] , etc.).
Bit sequence representations may be of any length; The empty list []  
represents the number 0.

Here is (most of) a module for bit sequences:

module Bits =
  struct
    (* The type of bit sequence representations *)
    type t = int list
    (* bits_of_int n -- Returns a bit representation of the int `n` *)
    let rec bits_of_int x =
      if x = 0 then []
      else x mod 2 :: bits_of_int (x / 2)
    (* int_of_bits bits -- Returns the integer represented by bit
       sequence `bits` *)
    let int_of_bits bits =
      fold_right (fun bit acc -> acc * 2 + bit) bits 0
    (* lengthen_bits bits1 bits2 -- Auxiliary function. Returns a pair of
       bit strings like `bits1` and `bits2` but padded at the end with 0s so
       they are the same length. *)
    let lengthen_bits bits1 bits2 =
      _________________________
    (* xor_ bits1 bits2 -- Returns the bitwise exclusive or of the two bit
       sequences `bits1` and `bits2` *)
    let xor_ bits1 bits2 =
      let bits1, bits2 = lengthen_bits bits1 bits2 in
      map2 (fun x y -> (x + y) mod 2) bits1 bits2
    (* and_ bits1 bits2 -- Returns the bitwise and of the two bit
       sequences `bits1` and `bits2` *)
    let and_ bits1 bits2 =
      let bits1, bits2 = lengthen_bits bits1 bits2 in
      map2 (fun x y -> x * y) bits1 bits2
    (* or_ bits1 bits2 -- Returns the bitwise or of the two bit
       sequences `bits1` and `bits2` *)
    let or_ bits1 bits2 =
      let bits1, bits2 = lengthen_bits bits1 bits2 in
      map2 (fun x y -> x + y - x * y) bits1 bits2
    (* not_ b -- Returns the bitwise negation of the bit
       sequence `b` *)
    let not_ =
      ________________________
    (* serialize b -> Returns a string representation of the bit
       sequence `b`, e.g., "100" for the representation of 4 *)
    let rec serialize bits =
      match bits with
      | [] -> ""
      | head :: tail -> (serialize tail) ^ (string_of_int head)



  end ;;

Q7.1
2 Points

Provide a specific example of an int list  that violates one or 
more of the bit sequence invariants, and is thus not a valid 
representation of a bit sequence.

Save Answer



Q7.2
6 Points

Provide a definition of the lengthen_bits  function. This is an 
auxiliary function that isn't of use outside the module. It is 
used to pad bit sequences with 0s at the end so they are the 
same length, so that they can then be operated on by functions 
like xor_ .  Examples:

# lengthen_bits [1; 1] [0; 0; 1] ;;
- : int list * int list = ([1; 1; 0], [0; 0; 1])

# lengthen_bits [0; 0; 1; 1] [1] ;;
- : int list * int list = ([0; 0; 1; 1], [1; 0; 0; 0])

Hint: Recall you can use functions that you have previously 
implemented on this exam.

Save Answer



Q7.3
4 Points

Provide a definition of the not_  function. Example:

# not_ [0; 1; 1; 0; 0] ;;
- : int list = [1; 0; 0; 1; 1]

Save Answer

Q7.4
6 Points

We'd like to constrain the Bits  module to an appropriate 
signature. Provide a definition for an appropriate OCaml 
signature called BITS . We've provided a start. You should fill in 
what goes in the blank to define an appropriate signature for 
the Bits  module.

module type BITS =
  sig
    ______________________
  end ;;

Save Answer



Q7.5
2 Points

Recall that the  first line of the definition of the Bits  module 
above was module Bits = . What should it have been so that it 
would be constrained by the signature you just defined?

Save Answer

Q7.6
3 Points

The Bits  module, constrained by the signature you defined, 
should now constitute an abstract data type. Can you use the 
Bits  ADT to generate a bit sequence (like the one you provided 
above) that violates the representational invariants? If so, 
provide an example of such a case. If not, explain why not. A 
sentence or two should suffice.

Save Answer

Save All Answers Submit & View Submission 


