
0/14 Questions Answered

Second Midterm Exam

Q1 Instructions and affirmation
0 Points

Before beginning this exam, make sure you have read and understood the

exam instructions that were distributed ahead of the exam and are available

at https://url.cs51.io/exam-instructions, and check the box below.

Save Answer

Q2 Generators
23 Points

A generator for a sequence is a function of type unit -> 'a for some type

 'a that returns the next element in the sequence each time it is called. For

instance, here is a (trivial) generator for the "constant" sequence

 1, 1, 1,

let one_gen () = 1 ;;

Generators are a common and quite useful mechanism, featured

prominently, for instance, in the Python programming language.

STUDENT NAME

Search students by name or email… !

I affirm my awareness of the standards of the Harvard College

Honor Code.

https://url.cs51.io/exam-instructions
https://url.cs51.io/exam-instructions

prominently, for instance, in the Python programming language.

Q2.1
5 Points

The constant generator above is boring; it generates the same value each

time it is called. Generators are interesting and useful in particular because

they can generate different values.

Define a generator nats_gen that generates the natural numbers as int s.

That is, on successive calls, it yields successive natural numbers, like this:

nats_gen () ;;
- : int = 0
nats_gen () ;;
- : int = 1
nats_gen () ;;
- : int = 2
nats_gen () ;;
- : int = 3

Enter your answer here

Save Answer

Q2.2
3 Points

Can nats_gen be implemented in the pure subset of OCaml (that is, the

part without any side effects)? Explain succinctly what aspect of the

behavior of nats_gen accounts for your answer.

Enter your answer here

Save Answer

Q2.3
5 Points

Define a generator square_gen : unit -> int that generates the

sequence of perfect squares starting with 1, 4, 9, 16,...:

square_gen () ;;
- : int = 1
square_gen () ;;
- : int = 4
square_gen () ;;
- : int = 9
square_gen () ;;
- : int = 16

Enter your answer here

Save Answer

Q2.4
5 Points

Define a function stream_of_gen of type (unit -> 'a) -> 'a stream

that takes a generator and returns a stream of its values. You can assume

that the NativeLazyStreams module from Lab 15 (see here) is open and

available to you. Here's an example of the intended behavior of

 stream_of_gen on a fresh instance of square_gen :

first 10 (stream_of_gen square_gen) ;;
- : int list = [1; 4; 9; 16; 25; 36; 49; 64; 81; 100]

https://github.com/cs51/lab15/blob/main/nativeLazyStreams.ml

Enter your answer here

Save Answer

Q2.5
5 Points

Above you've defined generators that can generate an unbounded number

of elements. Finite generators, which generate a finite number of elements

and then stop, need to signal when there are no more elements to

generate. We'll use the convention that when a generator is invoked to

generate an element but there are no more elements to generate, it raises

the NoMore exception, defined by

exception NoMore ;;

With that convention, define a function gen_of_list that takes a list as an

argument and returns a generator that generates the elements of the list in

order. For instance, it should have the following behavior:

let example = gen_of_list ["first"; "second"; "third"] ;;
val example : unit -> string = <fun>
example () ;;
- : string = "first"
example () ;;
- : string = "second"
example () ;;
- : string = "third"
example () ;;
Exception: NoMore.

Enter your answer here

Save Answer

Q3 Formal semantics
30 Points

Q3.1
5 Points

For each of the expressions below, list all of the free variables in the

expression, or specify "none" if the expression has no free variables. (The

formal definition of the set of free variables is given as Figure 13.3 in the

textbook.) You needn't (and shouldn't) give the derivation, just the answer.

1. let f = fun x -> x + y in f x

Enter your answer here

2. (fun x -> x + 1) 3

Enter your answer here

3. let f = fun x -> fun y -> if x < y then y else f y x in f 0 1

Enter your answer here

4. (fun x -> x) (fun y -> x)

Enter your answer here

Enter your answer here

5. (fun x -> (fun y -> x) x)

Enter your answer here

Save Answer

Q3.2
8 Points

What are the results of the following substitutions. (The formal definition of

substitution is given as Figure 13.4 in the textbook.) You needn't (and

shouldn't) give the derivation, just the answer.

1.

Enter your answer here

2.

Enter your answer here

3.

Enter your answer here

(fun y -> x)[x ↦ 42]

((fun y -> x) 21)[x ↦ 42]

(let x = x + 1 in x + 2)[x ↦ 42]

4.

Enter your answer here

Save Answer

Q3.3
12 Points

Consider the evaluation of the expression x := !x * 14 in an environment

that maps x to location and a store that maps to 3 . The derivation as

per the rules in Figure 19.4 for lexically-scoped environment semantics with

mutable storage would look like the following:

We have placed labeled boxes where the "outputs" of each derivation

judgement should go – the output value and output store. Your job is to

specify what goes in each box to form a well-formed derivation. We've done

several of them for you to give you the idea.

(let x = 5 in f y)[y ↦ x + 1]

l1 l1

several of them for you to give you the idea.

(Note: We've made the sizes of the labeled boxes all uniform, so you

shouldn't use the sizes as an indication of the size of the corresponding

answer.)

e.

Enter your answer here

f.

Enter your answer here

i.

Enter your answer here

j.

Enter your answer here

k.

Enter your answer here

l.

l.

Enter your answer here

Save Answer

Q3.4
5 Points

Construct an expression such that its semantic derivation (in the empty

environment and empty store, using the rules of Figure 19.4) would involve a

subderivation of exactly the form from the previous problem, that is, the

derivation for has within it a subderivation for the value of

x := !x * 14 in an environment that maps x to some location and a

store that maps to 3 .

Enter your answer here

Save Answer

Q4 Complexity
15 Points

Q4.1
3 Points

In problem set 3, you implemented bignums – integers of arbitrary size –

including a set of operations on bignums including multiplication. For

multiplication, you implemented the "elementary school" algorithm, which is

an algorithm. But in the challenge problem, we mentioned that there

was an algorithm whose time complexity has a smaller exponent,

P

{}, {} ⊢ P ⇓ ⋯
l1

l1

O(n)2

was an algorithm whose time complexity has a smaller exponent,

Karatsuba's algorithm.

Python's integer data type is a bignum implementation as well. Python's

implementation of bignum multiplication uses the Karatsuba algorithm, but

perhaps surprisingly, only for numbers larger than 70 digits. Here's the

actual pertinent comment from the Python source code:

/* For int multiplication, use the O(N**2) school algorithm unless
 * both operands contain more than KARATSUBA_CUTOFF digits....
 */

(KARATSUBA_CUTOFF is defined as 70 in the code.)

Now . Why might Python for time performance reasons still use

the elementary school algorithm for multiplying integers?

Enter your answer here

Save Answer

Q4.2
12 Points

Here is a simple sorting algorithm for mutable arrays based on swapping

adjacent elements that are out of order.

(* swap arr i j -- Modifies `arr` by swapping elements
 at indices `i` and `j` *)
let swap array i j =
 let temp = array.(i) in
 array.(i) <- array.(j);
 array.(j) <- temp ;;

(* sort arr -- Modifies `arr` placing its elements in
 sorted order by `<` *)
let rec sort (arr : 'a array) : unit =

O(n)1.58

n ≫2 n1.58

O(n)2

 for pass = 0 to Array.length arr - 1 do
 for index = 0 to Array.length arr - 2 do
 if arr.(index) > arr.(index + 1) then
 swap arr index (index + 1)
 done
 done ;;

and here is a demonstration of it working:

let a = [|5; 2; 1; 4; 3|] ;;
val a : int array = [|5; 2; 1; 4; 3|]
sort a ;;
- : unit = ()
a ;;
- : int array = [|1; 2; 3; 4; 5|]

Which of the following complexity classes does this algorithm fall within, in

terms of the number of elements in the array being sorted? We use as

an arbitrary positive constant. (You can assume that indexing into and

finding the length of an array can be done in constant time.)

n c

O(n)

O(n)2

O(n log c)

O(n)3

O(n +2 cn)

O(2)n

O(cn)

O(cn)2

O(n −2 c)

O(n log n)

Save Answer

Q5 Object-oriented pokemon
10 Points

The following problems concern an object-oriented implementation of the

world of Pokemon ("pocket monsters"), the cultural juggernaut found in

video games, films, television series, musicals, and even theme parks. All

you need to know is that species of Pokemon have funny names and a life

force measured in "hit points" (hp). They can also evolve from one species to

another. Here is an implementation of a class type and class to get started.

class type poke_type =
 object
 (* get_successor -- Returns the Pokemon that this one evolved
 into (as an option), or `None` if it hasn't (yet) evolved. *)
 method get_successor : poke_type option
 (* set_successor evolved_to -- Sets the successor Pokemon that
 this one `evolved_to`. *)
 method set_successor : poke_type option -> unit
 (* hit penalty -- Updates the hit points by reducing them by
 `penalty`. *)
 method hit : int -> unit
 (* is_dead -- Returns `true` if and only if this Pokemon is
 dead. *)
 method is_dead : bool
 (* evolve -- Evolves the Pokemon to a new one of whatever species
 it evolves to. *)
 method evolve : unit
 (* describe -- Returns a text description of the Pokemon and its
 evolutionary successors. *)
 method describe : string
 end

class pokemon (name : string) (init_hp : int) : poke_type =
 object
 val name : string = name

O(n log n)

O(n +2 c)

O(log n)

 val name : string = name
 val mutable hp : int = init_hp
 val mutable successor : poke_type option = None
 method get_successor = successor
 method set_successor evolved_to =
 successor <- evolved_to
 method hit penalty =
 hp <- max 0 (hp - penalty)
 method is_dead =
 hp <= 0
 method evolve =
 hp <- 0
 method describe =
 Printf.sprintf "%s [%d] --> %s"
 name hp (match successor with
 | None -> ""
 | Some next -> next#describe)
 end

For the purposes here,

When a Pokemon's hp reaches 0, it dies, as specified in the is_dead

method.

When a Pokemon evolves, the Pokemon object's successor is set to the

new Pokemon, and the object's hp is set to zero (that is, it dies).

In the next questions, you'll define a few classes for Pokemon species.

Because we've given you so much code to get started, your code should be
quite compact, and we'll be looking for succinctness in the code.

Q5.1
5 Points

Define a class raichu for a Pokemon species whose name is "Raichu" and

whose initial hp is 122. Raichu does not evolve into any other kind of

Pokemon, so you don't have to worry about that aspect.

Enter your answer here

Save Answer

Q5.2
5 Points

Define a class pikachu for a Pokemon species whose name is "Pikachu"

and whose initial hp is 82. Pikachu evolves into Raichu, so you'll want to

implement that in the evolve method.

Enter your answer here

Save Answer

Save All Answers Submit & View Submission "

