
CS 51: Abstraction and Design in Computation
First Midterm Examination
Spring, 2020

● You have 90 minutes to complete this exam.

● This is a closed-book exam. However, you are free to use up to 10 letter-size pages of notes

or other printed materials in preparing your solutions for this exam. No electronic devices

of any kind may be used.

● The exam is in three sections comprised of 13 questions. Numbers in brackets like this

[nnn points] are the points (out of 75 total) allocated to the problem and may provide a

very approximate recommendation for allocating time.

● Write the answers to all problems in the boxes provided. Write with a pen (or a very dark

pencil) as we will be scanning your exams for grading. Write clearly, as we can and will

only grade what we can unambiguously read. The exam packet is intentionally stapled in

the lower left corner to facilitate the scanning process. Do not remove the staple or remove

any pages from the exam packet. Anything written outside of the provided boxes will not

be graded. If additional room is needed for an answer, make a note in the box provided

and write the remainder of your answer in one of the boxes at the back of the examination.

● Many of the problems ask you to define something or write code to do something.

Throughout the exam, when we ask you to define a value or function or type or module,

we mean that you should provide a top-level OCaml definition written in well-formed, id-

iomatic OCaml using the appropriate OCaml definitional construct (let, type, module,

etc.). Your answers will be graded firstly on the well-formedness and correctness of the

code, but in keeping with the course’s goals, we may also secondarily consider the many

other dimensions of code quality – including design and style issues – in evaluating your

answers.

● To allow for anonymous grading of the exam, please write your name and ID number in

the boxes below on this page [0.5 points], and your ID number (but not your name) in the

box provided at the top of all subsequent odd-numbered pages [0.5 points].

● By filling in your name and ID number below, you affirm your awareness of the stan-

dards of the Harvard College Honor Code.

YOUR NAME:

YOUR HARVARD ID NUMBER:

2

1. FUNCTIONAL FUNDAMENTALS

Problem 1. [20 points] For each of the expressions below, write in the first box the type, if any,

that OCaml would infer for the expression, or write “NO TYPE” if the expression is not typable.

Then, for each of the typable expressions only, write in the second box the expression’s value

if any, or write “NO VALUE” if the expression has no value. (For function values give the value

simply as <fun> and for abstract values use <abstr>, mimicking the OCaml REPL.)

We’ve done the first one for you as an example.

(1) 2 * 3 * 7 ;;

type if any goes here, or “NO TYPE” if not typable

int

value if any goes here, or “NO VALUE” if no value is returned

42

(2) let rec f = fun x -> if x = 1 then pred x

else f (pred x) in

f 1000 ;;

type if any goes here, or “NO TYPE” if not typable

value if any goes here, or “NO VALUE” if no value is returned

(3) List.fold_left (||) false [true] ;;

type if any goes here, or “NO TYPE” if not typable

value if any goes here, or “NO VALUE” if no value is returned

Do not write below this line. It will not be scanned.

Your HUID⇒ 3

(4) Some None ;;

type if any goes here, or “NO TYPE” if not typable

value if any goes here, or “NO VALUE” if no value is returned

(5) let rec f g h = f g h in f ;;

type if any goes here, or “NO TYPE” if not typable

value if any goes here, or “NO VALUE” if no value is returned

(6) let rec f g h = h f g in f ;;

type if any goes here, or “NO TYPE” if not typable

value if any goes here, or “NO VALUE” if no value is returned

(7) let rec f g h = f h g in f ;;

type if any goes here, or “NO TYPE” if not typable

value if any goes here, or “NO VALUE” if no value is returned

Do not write below this line. It will not be scanned.

4

(8) let x = 2.0 in

let x = "2.0" in

x ^ x ;;

type if any goes here, or “NO TYPE” if not typable

value if any goes here, or “NO VALUE” if no value is returned

(9) let x = 5 in

if x > 10 then true else raise Exit ;;

type if any goes here, or “NO TYPE” if not typable

value if any goes here, or “NO VALUE” if no value is returned

(10) if if true then false else true then false else true ;;

type if any goes here, or “NO TYPE” if not typable

value if any goes here, or “NO VALUE” if no value is returned

Do not write below this line. It will not be scanned.

Your HUID⇒ 5

Problem 2. [5 points] Without using any functions from the List module, define a function

copies : int -> string -> string such that copies n str returns a string composed of

n copies of the given string str. If n is negative, the function should return the empty string.

For instance,

copies 4 "abc" ;;

- : string = "abcabcabcabc"

copies (-2) "abc" ;;

- : string = ""

copies 12 "o_O " (* a crowd *) ;;

- : string = "o_O o_O o_O o_O o_O o_O o_O o_O o_O o_O o_O o_O "

Do not write below this line. It will not be scanned.

6

2. MULTISETS

A MULTISET is a mathematical object much like a set – that is, an unordered collection of el-

ements – except that a multiset, unlike a set, can contain more than one instance of the same

element. Natural operations on multisets include adding and dropping elements and deter-

mining the count of how many occurrences of an element (zero or more) exist in a multiset, as

well as union and intersection of multisets. In this section, you’ll work with a multiset module

signature and its implementation. But first, a short digression.

2.1. Comparing values. Recall the definition of the COMPARABLE module signature from the

textbook that packages together a type with an ordering function over elements of the type.

(Note that the compare function here uses a different convention for its return value than the

one from the previous section; it returns an order, not an int.)

We repeat the module signature here for your reference:

module type COMPARABLE =

sig

type t

type order = Less | Equal | Greater

val compare : t -> t -> order

end ;;

Do not write below this line. It will not be scanned.

Your HUID⇒ 7

Problem 3. [7 points] Define a module called IntComparable that satisfies the COMPARABLE

signature where the type IntComparable.t is int. Your definition should allow for behavior

like

IntComparable.compare 3 4 ;;

- : IntComparable.order = IntComparable.Less

IntComparable.compare 5 5 ;;

- : IntComparable.order = IntComparable.Equal

Make sure to apply an appropriate module signature to IntComparable. This module will be

useful in the later parts of this section.

Do not write below this line. It will not be scanned.

8

2.2. A multiset signature and its implementation. A signature for a multiset abstract data type

is the following:

module type MULTISET =

sig

type element (* the type of elements of the multiset *)

type t (* the type of the multiset itself *)

(* an empty multiset *)

val empty_set : t

(* empty_p mset -- Returns `true` if and only if `mset`

is empty *)

val empty_p : t -> bool

(* add elt mset -- Returns a multiset like `mset` with

one more `elt` *)

val add : element -> t -> t

(* drop elt mset -- Returns a multiset with one `elt`

removed from `mset` *)

val drop : element -> t -> t

(* count elt mset -- Returns the number of `elt`s in

`mset` *)

val count : element -> t -> int

(* union mset1 mset2 -- Returns a multiset containing

the elements of both argument multisets *)

val union : t -> t -> t

(* intersection elt mset -- Returns a multiset containing

the elements that are in both argument multisets *)

val intersection : t -> t -> t

end ;;

Figure 1 provides a partial definition for a functor MakeMultiset that generates modules

implementing the MULTISET signature whose elements are taken from a COMPARABLEmodule.

In this implementation, the multiset is internally represented as a list of pairs of an element

and the count of how many times the element occurs in the multiset. It obeys the invariants

that counts are always positive and the pairs are kept sorted by the element.

Do not write below this line. It will not be scanned.

Your HUID⇒ 9

Problem 4. [5 points] You’ll notice that in the second line of the functor implementation in Fig-

ure 1, there’s a box where the signature of the module that the functor generates should go. What

ought to go in the box to specify the signature of modules generated by the MakeMultiset func-

tor?

Problem 5. [5 points] Using the MakeMultiset functor, define a module IntMultiset for mul-

tisets of integers.

Problem 6. [2 points] In a sentence, explain the advantage of using a functor to generate

(monomorphic) implementations of the MULTISET signature, as in Figure 1, over providing a

single (polymorphic) module.

Do not write below this line. It will not be scanned.

10

For the remaining problems in this section, you can assume that the IntMultisetmodule

has been opened as by

open IntMultiset ;;

Problem 7. [3 points] Now define an integer multiset m that contains two 5s and a 1.

Problem 8. [3 points] Give an expression of type bool that evaluates to true just in case the

multiset m has more 5s than 1s.

Do not write below this line. It will not be scanned.

Your HUID⇒ 11

module MakeMultiset (Element : COMPARABLE)

: (... the module signature goes here...)

=

struct

type element = Element.t

(* multisets are implemented as an association list of

elements and their count, sorted by element according

to the comparison function *)

type t = (element * int) list

let empty_set = []

let empty_p mset = mset = empty_set

let rec adjust fn elt mset =

match mset with

| [] -> let newcount = fn 0 in

if newcount = 0 then mset

else (elt, newcount) :: mset

| (current, curcount) :: rest ->

match Element.compare elt current with

| Less -> let newcount = fn 0 in

if newcount = 0 then mset

else (elt, newcount) :: mset

| Equal -> let newcount = fn curcount in

if newcount = 0 then rest

else (elt, newcount) :: rest

| Greater -> (current, curcount) :: adjust fn elt rest

let rec add elt mset =

adjust succ elt mset

let rec drop elt mset =

adjust (fun count -> if count = 0 then 0 else pred count)

elt mset

(* ...the rest of the implementation would go here... *)

end ;;

FIGURE 1. Part of an implementation of multisets using sorted association lists.

Do not write below this line. It will not be scanned.

12

3. THE ROYAL SUCCESSION

In this and the following sections, you should feel free to make idiomatic use of

library functions such as map, fold_left, fold_right, and filter and other

functions from the the Listmodule and the Stdlibmodule. For brevity, you can

also assume that these modules have been opened already as by

open List ;;

The royal succession is the sequencing of members of the British royal family as to what or-

der they will ascend to the throne. As of the passing of the Succession to the Crown Act 2013,

the succession order is based on “absolute primogeniture”, a traversal of the family tree of the

monarch with the parent at the root of the tree coming before the children’s families and with

siblings ordered by age. (Sex and membership in the Catholic Church are no longer factors.)

Thus, for instance, for the Windsor (partial) family tree depicted in Figure 2, the order of suc-

cession begins at the root of the tree with Elizabeth, then succeeding to the oldest child Charles

and his family (in primogeniture order – William, George, Charlotte, etc.), then Anne and her

family, and finally Andrew and Edward’s families.

We can represent a royal family tree using the following type definition, a record type that

contains the name and age of a royal, together with a list of children:

type royal = {name : string;

age : int;

children : royal list} ;;

The Windsor family (or at least a portion of it) is then as given in Figure 3. It defines a value

named windsors, which is used below.

Elizabeth (93)

Edward (55) (2 more children)

Charles (71)

Harry (35) Archie (0)

William (37)

Charlotte (4)

George (6)

Louis (1)

Andrew (60) (2 more children)

Anne (69)
Zara (38) (2 more children)

Peter (42) (2 more children)

FIGURE 2. A partial family tree of Elizabeth II, along with the ages of the mem-

bers. Note that the tree as depicted is not in age order.

Do not write below this line. It will not be scanned.

Your HUID⇒ 13

Problem 9. [6 points] Recall that the Stdlib function compare : int -> int -> int com-

pares two integers x and y using the following convention: It returns 0 if x is equal to y, a negative

integer if x is less than y, and a positive integer if x is greater than y. (This is just the convention

expected by the List.sort : (’a -> ’a -> int) -> ’a list -> ’a list function.)

Define a function compare_age : royal -> royal -> int that uses the same convention

to compare the ages of two royals. That is, it returns a negative integer if the first of the two royals

is younger, zero if the same age, and a positive integer if the first of the two is older.

Problem 10. [1 points] Is your definition of compare_age curried or uncurried?

◻ curried

◻ uncurried

◻ neither

Do not write below this line. It will not be scanned.

14

let windsors =

{name = "Elizabeth";

age = 93;

children =

[{name = "Anne";

age = 69;

children = [{name = "Peter";

age = 42;

children = [] (* eliding two children *) };

{name = "Zara";

age = 38;

children = [] (* eliding two children *) }]};

{name = "Andrew";

age = 60;

children = [] (* eliding two children *)};

{name = "Charles";

age = 71;

children = [{name = "William";

age = 37;

children = [{name = "Louis";

age = 1;

children = []};

{name = "George";

age = 6;

children = []};

{name = "Charlotte";

age = 4;

children = []}]};

{name = "Harry";

age = 35;

children = [{name = "Archie";

age = 0;

children = []}]}]};

{name = "Edward";

age = 55;

children = [] (* eliding two children *)}]} ;;

FIGURE 3. The Windsor family tree represented as the royal data type

Do not write below this line. It will not be scanned.

Your HUID⇒ 15

Problem 11. [7 points] Define a function count_royals that returns the number of royals in its

argument royal family tree. For instance,

count_royals windsors ;;

- : int = 13

Problem 12. [2 points] What is the type of count_royals?

Do not write below this line. It will not be scanned.

16

Problem 13. [8 points] Define a function primogeniture : royal -> string list, which

returns a list of the names of the members of a royal family in primogeniture order (that is, ac-

cording to the succession traversal derived above). For instance, the computation

primogeniture windsors ;;

- : string list =

["Elizabeth"; "Charles"; "William"; "George"; "Charlotte";

"Louis"; "Harry";

"Archie"; "Anne"; "Peter"; "Zara"; "Andrew"; "Edward"]

shows that 6-year-old George is the third in line to the throne after Charles and William.

Feel free to make use of functions you’ve implemented in previous problems as well as List

library functions. Keep in mind that the royal data structure might not have the children listed

in age order (for instance, as in Figure 3).

End of exam.

Total points: 75

Do not write below this line. It will not be scanned.

Your HUID⇒ 17

EXTRA SPACE FOR ANSWERS

Reference this area with “See box 1”

Reference this area with “See box 2”

Do not write below this line. It will not be scanned.

18

Reference this area with “See box 3”

Reference this area with “See box 4”

Do not write below this line. It will not be scanned.

	1. Functional fundamentals
	2. Multisets
	2.1. Comparing values
	2.2. A multiset signature and its implementation

	3. The royal succession
	Extra space for answers

