
CS 51: Abstraction and Design in Computation
First Midterm Examination
Spring, 2019

• You have 90 minutes to complete this exam.

• This is a closed-book exam. However, you are free to use up to 10 letter-size pages of notes

or other printed materials in preparing your solutions for this exam. No electronic devices

of any kind may be used.

• The exam is in four sections comprised of 10 questions. Numbers in brackets like this

[nnn points] are the points (out of 80 total) allocated to the problem and may provide a

very approximate recommendation for allocating time.

• Write the answers to all problems in the boxes provided. Write with a pen (or a very dark

pencil) as we will be scanning your exams for grading. Write clearly, as we can and will

only grade what we can unambiguously read. The exam packet is intentionally stapled in

the lower left corner to facilitate the scanning process. Do not remove the staple or remove

any pages from the exam packet. Anything written outside of the provided boxes will not

be graded. If additional room is needed for an answer, make a note in the box provided

and write the remainder of your answer in one of the boxes at the back of the examination.

• Many of the problems ask you to define something or write code to do something.

Throughout the exam, when we ask you to define a value or function or type or module,

we mean that you should provide a top-level OCaml definition written in well-formed, id-

iomatic OCaml using the appropriate OCaml definitional construct (let, type, module,

etc.). Your answers will be graded firstly on the well-formedness and correctness of the

code, but in keeping with the course’s goals, we may also secondarily consider the many

other dimensions of code quality – including design and style issues – in evaluating your

answers.

• To allow for anonymous grading of the exam, please write your name and ID number in

the boxes below on this page [0.5 points], and your ID number (but not your name) in the

box provided at the top of all subsequent odd-numbered pages [0.5 points].

• By filling in your name and ID number below, you affirm your awareness of the stan-

dards of the Harvard College Honor Code.

Solution:

SOLUTION
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1. TYPES AND TYPE INFERENCE

Problem 1. [12 points] For each of the following OCaml function types, define a function (with

no explicit typing annotations, that is, no uses of the : operator) for which OCaml would infer

that type. The functions need not be practical or do anything useful; they need only have the

requested type. For this problem, do not make use of anything from any library modules other

than Pervasives. Provide your answers in the boxes provided below. (The first problem is done

for you as an example.)

(1) bool -> unit

(2) int -> int option

Solution: let f x = Some (x + 0) ;;

(3) ’a * bool -> ’a

Solution: let f (x, b) = if b then x else x ;;

(4) ’a -> ’b list option

Solution: let f x = Some [] ;;

(5) (’a -> ’b) -> (’b -> ’c) -> (’a -> ’c)

Solution: let f g x = g (f x) ;;

Note that the Ocaml REPL may present the type of this function as (’a -> ’b)

-> (’b -> ’c) -> ’a -> ’c, which is equivalent as the -> type constructor

is right-associative.
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Problem 2. [12 points] For each of the following top-level let definitions, give a typing for the

variable being defined that provides its most general type (as would be inferred by OCaml) or

explain briefly why the expression is not well typed. (The first problem is done for you as an

example.)

(1) let f x =

x +. 42. ;;

(2) let x = let y x = x in y ;;

Solution: x : ’a -> ’a

(3) let x = 3, 3 * 3, 3 ;;

Solution: x : int * int * int

(4) let x = List.map ((+) 3.) [4., 5., 6.] ;;

Solution: The expression doesn’t type. The + function is of type int -> int

-> int but it is being applied to a float.

(5) let x = let open List in

fun y -> filter ((=) y) ;;

Solution: f : ’a -> ’a list -> ’a list
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2. DEFINING SOME FUNCTIONS

The Pervasives.string_of_bool function returns a string representation of a boolean.

Here it is in operation:

# string_of_bool (3 = 3) ;;

- : string = "true"

# string_of_bool (0 = 1) ;;

- : string = "false"

Problem 3. [2 points] What is the type of string_of_bool?

Solution:

bool -> string

Problem 4. [6 points] Provide your own definition of the function string_of_bool (without

using Pervasives.string_of_bool of course).

Solution:

let string_of_bool (b : bool) : string =

if b then "true" else "false" ;;
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Recall that the Pervasives.compare function compares two values, returning an int based

on their relative magnitude: compare x y returns 0 if x is equal to y, -1 if x is less than y, and

+1 if x is greater than y.

A function compare_lengths : ’a list -> ’b list -> int that compares the lengths

of two lists can be implemented using compare by taking advantage of the length function1

from the Listmodule:

let compare_lengths xs ys =

compare (List.length xs) (List.length ys) ;;

For instance,

# compare_lengths [1] [2; 3; 4] ;;

- : int = -1

# compare_lengths [1; 2; 3] [4] ;;

- : int = 1

# compare_lengths [1; 2] [3; 4] ;;

- : int = 0

However, this implementation of compare_lengths does a little extra work than it needs to. Its

complexity is O(n) where n is the length of the longer of the two lists.

1For reference, this built-in length function is, unsurprisingly, linear in the length of its argument.
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Problem 5. [6 points] Why does compare_lengths have this big-O complexity? In particular,

why does the length of the shorter list not play a part in the complexity? We’re looking for a brief

informal argument here, not a full derivation of its complexity.

Solution: Since length is linear in the length of its argument, compare_-

lengths is linear in the sum of the lengths of its two arguments. But that sum is

less than or equal to twice the length of the longer argument. Thus, compare_-

lengths is in O(2n), where n is the length of the longer argument, hence, drop-

ping multiplicative constants, O(n).
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Problem 6. [8 points] Provide an alternative implementation of compare_lengthswhose com-

plexity is O(n) where n is the length of the shorter of the two lists, not the longer.

Solution:

# let rec compare_lengths xs ys =

# match xs, ys with

# | [], [] -> 0

# | _, [] -> 1

# | [], _ -> -1

# | _xhd :: xtl, _yhd :: ytl -> compare_lengths xtl ytl ;;

val compare_lengths : 'a list -> 'b list -> int = <fun>
# compare_lengths [1] [2;3;4] ;;

- : int = -1

# compare_lengths [1;2;3] [4] ;;

- : int = 1

# compare_lengths [1;2] [3;4] ;;

- : int = 0
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3. SUBSTITUTION SEMANTICS

Problem 7. [8 points] Provide a derivation demonstrating that the expression

(fun x -> x + 2) 3

evaluates to 5 according to the substitution semantics rules provided in Figure 1. For your refer-

ence, we’ve also provided the rules for substitution in Figure 2.

Solution:

(fun x -> x + 2) 3 ⇓∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(fun x -> x + 2) ⇓ (fun x -> x + 2)
3 ⇓ 3
3 + 2 ⇓∣∣∣∣∣ 3 ⇓ 32 ⇓ 2

⇓ 5
⇓ 5
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n ⇓ n (Rint)

P + Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n

⇓ m +n

(R+)

P / Q ⇓∣∣∣∣∣ P ⇓ m

Q ⇓ n

⇓ bm/nc

(R/)

(and similarly for other binary operators)

let x = D in B ⇓∣∣∣∣∣ D ⇓ vD

B [x 7→ vD ] ⇓ vB

⇓ vB

(Rlet)

fun x -> B ⇓ fun x -> B (Rfun)

P Q ⇓∣∣∣∣∣∣∣
P ⇓ fun x -> B

Q ⇓ vQ

B [x 7→ vQ ] ⇓ vB

⇓ vB

(Rapp)

FIGURE 1. Definitions of rules for evaluating expressions, for a functional lan-

guage with naming and arithmetic.
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m[x 7→ P ] = m (1)

x[x 7→ P ] = P (2)

y[x 7→ P ] = y where x . y (3)

(Q + R)[x 7→ P ] =Q[x 7→ P ] + R[x 7→ P ] (4)

and similarly for other binary operators

Q R[x 7→ P ] =Q[x 7→ P ]R[x 7→ P ] (5)

(fun x -> Q)[x 7→ P ] = fun x -> Q (6)

(fun y -> Q)[x 7→ P ] = fun y -> Q[x 7→ P ] (7)

where x . y and y ∉ FV (P )

(fun y -> Q)[x 7→ P ] = fun z -> Q[y 7→ z][x 7→ P ] (8)

where x . y and y ∈ FV (P ) and z is a fresh variable

(let x = Q in R)[x 7→ P ] = let x = Q[x 7→ P ] in R (9)

(let y = Q in R)[x 7→ P ] = let y = Q[x 7→ P ] in R[x 7→ P ] (10)

where x . y and y ∉ FV (P )

(let y = Q in R)[x 7→ P ] = let z = Q[x 7→ P ] in R[y 7→ z][x 7→ P ] (11)

where x . y and y ∈ FV (P ) and z is a fresh variable

FIGURE 2. Definition of substitution of expressions for variables in expressions

for a functional language with naming and arithmetic.
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4. BINARY SEARCH TREES AND GORN ADDRESSES

In this section, you’ll work with binary search trees, and learn about a method for specifying

particular nodes in trees due to computer pioneer Saul Gorn (Figure 3(a)).

Binary search trees (for the purpose of this section) are binary trees in which (non-empty)

nodes store a value, and further satisfy an invariant that for a node with value x all of the values

stored in its left subtree compare (via the < operator) as less than x and all in the right subtree

compare greater than or equal to x. This allows efficient insertion into a tree and searching in

the tree for a given item.

Here’s an algebraic data type for polymorphic binary search trees, where the values stored at

the nodes are of type ’a.

type 'a bintree =

| Empty

| Node of 'a bintree * 'a * 'a bintree ;;

We’ve provided in the box below an attempt at a function insert : ’a -> ’a bintree

-> ’a bintree to insert a new item into a binary search tree. Unfortunately, there are several

mistakes in the code that lead to errors, warnings, or incorrect functioning.

1 let insert (item : 'a) (tree : bintree) : bintree =

2 match bintree with

3 | Empty -> Node (Empty, item, Empty)

4 | Node (left, old, right) ->

5 if old < item then

6 Node (insert item left, right)

7 else

8 Node (left, insert item right) ;;
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Problem 8. [9 points] Identify as many of these bugs as there are (but no more), giving line num-

bers for each and explaining what each problem is as succinctly but specifically as you can and

describing how it might be fixed.

Solution:

(1) 1: rec keyword missing

(2) 1: bintree should be ’a bintree (twice)

(3) 2: bintree should be tree

(4) 5: test is wrong parity – if item < old ...

(5) 6, 8: missing middle argument (old) for Node constructor
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Using the insert function (as corrected), we can, for instance, build the tree depicted in

Figure 3(b) as follows:

# let tr = Empty

# |> insert 10

# |> insert 5

# |> insert 15

# |> insert 7

# |> insert 9 ;;

val tr : int bintree =

Node (Node (Empty, 5, Node (Empty, 7, Node (Empty, 9,

Empty))), 10,

Node (Empty, 15, Empty))

The Gorn address of a node in a tree (named after the early computer pioneer Saul Gorn of

University of Pennsylvania (Figure 3(a)), who invented the technique) is a description of the

path to take from the root of the tree to the node in question. For a binary tree, the elements of

the path specify whether to go left or right at each node starting from the root of the tree. We’ll

define an enumerated type for the purpose of recording the left/right moves.

type direction = Left | Right ;;

Thus, for the tree tr defined above (depicted in Figure 3(b)), the Gorn address of the root is []

and the Gorn address of the node containing the item 9 is [Left, Right, Right].

10

5 15

7

9

•

•

•

•

• •

(a) (b)

FIGURE 3. (a) Saul Gorn with the UNIVAC-1 computer at the University of Penn-

sylvania, 1950s. (b) A binary search tree, generated by inserting into an empty

tree the integers 10, 5, 15, 7, and 9 in that order. The small circles indicate empty

nodes. The Gorn address of the 9 node is [Left, Right, Right], as indicated

by the highlighted path.
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Problem 9. [10 points] Define a function gorn : ’a -> ’a bintree -> direction list

that given an item and a binary search tree returns the Gorn address of the item in the tree. It

should raise a Failure exception if the item doesn’t occur in the tree. For instance,

# gorn 9 tr ;;

- : direction list = [Left; Right; Right]

# gorn 10 tr ;;

- : direction list = []

# gorn 100 tr ;;

Exception: Failure "gorn: item not found".

Solution:

# let rec gorn item tree =

# match tree with

# | Empty -> failwith "gorn: item not found"

# | Node (left, old, right) ->

# if item = old then []

# else if item < old then

# Left :: gorn item left

# else

# Right :: gorn item right ;;

val gorn : 'a -> 'a bintree -> direction list = <fun>
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Problem 10. [6 points] Define a function find : ’a -> ’a bintree -> bool that given an

item and a binary search tree returns true if the item is in the tree and false otherwise. You may

want to use the gorn function in defining find. Examples of the find function in use include:

# find 9 tr ;;

- : bool = true

# find 100 tr ;;

- : bool = false

Solution:

# let find item tree =

# try

# let _ = gorn item tree

# in true

# with

# | Failure _ -> false ;;

val find : 'a -> 'a bintree -> bool = <fun>

End of exam.

Total points: 80
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