
CS 51: Introduction to Computer Programming II
Second Midterm Examination
Spring, 2018

You have 90 minutes to complete this exam.
This is an open-book exam: You are free to use books and notes in preparing your solutions for

this exam. However, no electronic devices of any kind may be used.
The exam is in four sections comprised of 17 questions. Numbers in brackets like this

[nnn points] are the points (out of 75 total) allocated to the problem and may provide a very
approximate recommendation for allocating time.

Write the answers to all problems in the boxes provided. Write with a pen (or a very dark pencil)
as we will be scanning your exams for grading. Write clearly, as we can and will only grade what
we can unambiguously read. The exam packet is intentionally stapled in the lower left corner to
facilitate the scanning process. Do not remove the staple or remove any pages from the exam packet.
Anything written outside of the provided boxes will not be graded. If additional room is needed for
an answer, make a note in the box provided and write the remainder of your answer in one of the
boxes at the back of the examination.

Many of the problems ask you to define something or write code to do something. Throughout
the exam, when we ask you to define a value or function or type or class or module, we mean
that you should provide a top-level OCaml definition written in well-formed, idiomatic OCaml
using the appropriate OCaml definitional construct (let, type, class, module, etc.). Except
where explicitly noted, you are free to use functions from the standard OCaml libraries such as
Pervasives, List, and Random. Your answers will be graded firstly on the well-formedness and
correctness of the code, but in keeping with the course’s goals, we may also secondarily consider
the many other dimensions of code quality – including design and style issues – in evaluating your
answers.

To allow for anonymous grading of the exam, please write your name and ID number in the boxes
below on this page [0.5 points], and your ID number (but not your name) in the box provided at
the top of all subsequent odd-numbered pages [0.5 points].

By filling in your name and ID number below, you affirm your awareness of the stan-
dards of the Harvard College Honor Code.

Solution:

SOLUTION
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1. Playing REPL

Suppose you typed the following OCaml expressions into the ocaml REPL sequentially.
Answer the questions below about the status of the various variables being defined.

(1) let p = ref 11 ;;
(2) let r = ref p ;;
(3) let s = ref !r ;;
(4) let t =

!s := 14;

!p + !(!r) + !(!s) ;;

(5) let t =
s := ref 17;

!p + !(!r) + !(!s) ;;

Problem 1. [2 points] After (1), what is the type of p?

Solution:
int ref

Problem 2. [2 points] After (2), what is the type of r?

Solution:
int ref ref

Problem 3. [4 points] After (3), which of the following holds? Mark all by clearly filling in the
appropriate box – T for true and F for false.

(1) T F p and s have the same type
(2) T F r and s have the same type
(3) T F p and s have the same value (in the sense that p = swould be true)
(4) T F r and s have the same value (in the sense that r = swould be true)

Solution:
(1) T F■ p and s have the same type
(2) T■ F r and s have the same type
(3) T F■ p and s have the same value (in the sense that p = s would be
true)

(4) T■ F r and s have the same value (in the sense that r = s would be
true)

Problem 4. [2 points] After entering the expressions through (4), what is the value of t?
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Solution:
42

Problem 5. [2 points] After entering the expressions through (5), what is the value of t?

Solution:
45
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Now suppose you typed the following OCaml expressions into the ocamlREPL sequen-
tially. Answer the questions below about the values of some of the expressions.

(1) class type sample =
object

method first : int

method last : int

method transform : int -> unit

end ;;

class top (i : int) : sample =

object (this)

val mutable low = i

val mutable high = i

method first = low

method last = high

method transform inc =

low <- this#first + inc;

high <- this#last + this#first

end ;;

class bottom (i : int) (j : int) : sample =

object (this)

inherit top (i + j) as super

method! last = super#last + j

end ;;

(2) let o = new bottom 1 3 ;;
(3) o#first, o#last ;;
(4) o#transform 10 ;;
(5) o#first, o#last ;;

Problem 6. [3 points] What is the value of the expression in (3)?

Solution:
4, 7

Problem 7. [3 points] What is the value of the expression in (4)?
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Solution:
()

Problem 8. [3 points] What is the value of the expression in (5)?

Solution:
14, 24
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2. RandomWalks

A random walk is a mathematical model of the path taken by an entity that takes steps
randomly. Imagine you are standing in front of a house at 0 Long Street, an aptly-named
street of consecutively numbered houses that proceeds infinitely in both directions. You
decide to explore by walking one house left or right, the direction chosen by a random
coin flip. Flipping heads, you go left, and find yourself in front of house number −1. After
another flip, tails this time, you go right and you’re back at 0, then 1, then 0 again, then
1, then 2, and so it goes. (Figure 1 depicts this left and right random walk.) This random
process generates an infinite sequence of locations, which we’d like to model as an infinite
stream.

–1 0 1 2 3–2–3 ••••••
start here

etc.

Figure 1. A random walk along Long Street, starting at house 0, and visiting,
in order, 0, −1, 0, 1, 0, 1, 2, . . . .
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Start by implementing a simple function flip : unit -> int that returns -1 or 1
randomly with equal probability. For example:

# flip () ;;

- : int = -1

# flip () ;;

- : int = -1

# flip () ;;

- : int = 1

You may want to use the function Random.bool : unit -> bool from the Randommodule,
which randomly returns true or falsewith equal probability.

Problem 9. [3 points] Define the function flip.

Solution:
let flip () =

if Random.bool () then -1

else 1 ;;
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Now, define an int stream called walk, an infinite stream of integers starting with 0
representing a random walk as described above. The first few elements of the stream
might (depending on the random coin flips generated) look like this:

# first 20 walk ;;

- : int list = [0; -1; 0; 1; 0; 1; 2; 1; 2; 1; 2; 1; 0; 1; 2; 3; 2; 3; 4; 3]

For your reference, Figure 2 on page 10 provides the code for the NativeLazyStreams
module, which you can assume has been opened for your use.

Here’s a hint to think about: Given a random walk stream starting with 0, say,
0, 1, 2, 1, 2, 3, . . ., we can extend it one step further by either incrementing or decrementing
every element in the stream (that is, adding or subtracting 1) and prepending a zero. For
instance, subtracting a 1 gives us the infinite stream −1, 0, 1, 0, 1, 2, . . ., and prepending
the zero generates the longer random walk 0,−1, 0, 1, 0, 1, 2, . . .. Of course, the decision to
increment or decrement needs to be made independently each time the stream is length-
ened.

Problem 10. [5 points] Define walk : int stream as described above.

Solution:
let rec walk =

lazy (Cons (0, smap (fun n -> n + flip ()) walk)) ;;

One might be inclined to partially apply the addition operator, that is,
let rec walk =

lazy (Cons (0, smap ((+) (flip ())) walk)) ;;

This doesn’t work, as the call to flip is evaluated the first time the value is
forced (in order to generate the argument to smap), and all later uses of the
function add the same value. Thus, you either get the walk 0, 1, 2, 3, 4, . . . or
0,−1,−2,−3,−4, . . . depending on the call to flip.

Another approach is to ignore the hint completely and use an auxiliary
function:
let rec walkfrom n =

lazy (Cons (n, walkfrom (n + flip()))) ;;

let walk2 = walkfrom 0 ;;
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An interesting question is what is the maximum house number you’ve ever reached
after a certain number of steps of a random walk (that is, how far to the right you’ve ever
reached). You’ll define a function max_reached : int stream -> int -> int such that
max_reached s n returns the maximum integer in the first n elements in the stream s.
(We won’t be concerned with the value of max_reached s n where n is zero or less.) For
instance,

# max_reached walk 10 ;;

- : int = 2

# max_reached walk 100 ;;

- : int = 8

# max_reached walk 1000 ;;

- : int = 17

(You’ll notice that this maximum grows very slowly, consistent with the theory of random
walks.)

Problem 11. [5 points] Define the function max_reached : int stream -> int -> int.
(No need to worry about efficiency of your code.)

Solution:
let max_reached (s : int stream) (n : int) : int =

List.fold_left max 0 (first n s) ;;

It’s also reasonable, and arguably preferable, to have the fold start from
min_int.
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module NativeLazyStreams =
struct

type ’a str = Cons of ’a * ’a stream
and ’a stream = ’a str Lazy.t ;;

let head (s : ’a stream) : ’a =
let Cons(h, _t) = Lazy.force s in h ;;

let tail (s : ’a stream) : ’a stream =
let Cons(_h, t) = Lazy.force s in t ;;

let rec first (n : int) (s : ’a stream) : ’a list =
if n = 0 then []
else head s :: first (n - 1) (tail s) ;;

let rec smap (f : ’a -> ’b) (s : ’a stream) : ’b stream =
lazy (Cons(f (head s), smap f (tail s)));;

let rec smap2 (f : ’a -> ’b -> ’c)
(s1 : ’a stream)
(s2 : ’b stream)
: ’c stream =

lazy (Cons(f (head s1) (head s2), smap2 f (tail s1) (tail s2))) ;;

let rec sfilter (pred : ’a -> bool) (s : ’a stream) : ’a stream =
lazy (if pred (head s)

then Cons((head s), sfilter pred (tail s))
else Lazy.force (sfilter pred (tail s))) ;;

end

Figure 2. The native implementation of lazy streams (from Lab 6)
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3. Complexity

Consider the following functions:

f (x) = x3 − x − 4

g(x) = 5x2 + 23

p(x) = min( f (x), g(x))

q(x) = max( f (x), g(x))

Here are some sample values of each of the functions:

x f g p q

1 −4 28 −4 28
2 0 43 0 43
3 20 68 20 68
4 56 103 56 103
5 116 148 116 148
6 206 203 203 206

Problem 12. [8 points] Which of the following statements are true or false? Mark all by clearly
filling in the appropriate box – T for true and F for false.

(1) T F f ∈ O(x)
(2) T F f ∈ O(x2)
(3) T F f ∈ O(x3)
(4) T F f ∈ O(x4)
(5) T F g ∈ O(x)
(6) T F g ∈ O(x2)
(7) T F g ∈ O(x3)
(8) T F g ∈ O(x4)

(9) T F p ∈ O(x)
(10) T F p ∈ O(x2)
(11) T F p ∈ O(x3)
(12) T F p ∈ O(x4)
(13) T F q ∈ O(x)
(14) T F q ∈ O(x2)
(15) T F q ∈ O(x3)
(16) T F q ∈ O(x4)

(17) T F f ∈ O(g)
(18) T F g ∈ O( f )
(19) T F f ∈ O( f )
(20) T F g ∈ O(g)

Solution:

(1) T F■ f ∈ O(x)
(2) T F■ f ∈ O(x2)
(3) T■ F f ∈ O(x3)
(4) T■ F f ∈ O(x4)
(5) T F■ g ∈ O(x)
(6) T■ F g ∈ O(x2)
(7) T■ F g ∈ O(x3)
(8) T■ F g ∈ O(x4)

(9) T F■ p ∈ O(x)
(10) T■ F p ∈ O(x2)
(11) T■ F p ∈ O(x3)
(12) T■ F p ∈ O(x4)
(13) T F■ q ∈ O(x)
(14) T F■ q ∈ O(x2)
(15) T■ F q ∈ O(x3)
(16) T■ F q ∈ O(x4)

(17) T F■ f ∈ O(g)
(18) T■ F g ∈ O( f )
(19) T■ F f ∈ O( f )
(20) T■ F g ∈ O(g)



12

We’ve seen algorithms that work by dividing a problem of size n into two equal-sized
pieces of size n/2, solving them recursively, and combining the results. If the combination
can be done in constant time, the complexity of such an algorithm can be modeled by the
recurrence equation

T(n) = 2 · T(n/2) + c for n > 0

T(0) = c

where c is a constant.
In this problem, however, we’ll look at a different recurrence equation, one for algo-

rithms that divide the problem into unequal size pieces. Suppose the division is into one
piece of size a (a constant) and the remaining piece of size n−a. An appropriate recurrence
would be

T(n) = T(a) + T(n − a) + c for n > a

(Again, a and c are constants.) For the base case, we can assume that the time required is
constant for all problems up to size a:

T(n) = c for n ≤ a

Problem 13. [8 points] Derive the “big-O” complexity of T(n) as defined by

T(n) = T(a) + T(n − a) + c for n > a

T(n) = c for n ≤ a

by unfolding the equations and simplifying, making sure to conclude with a “big-O” characteriza-
tion of the result. Show your work.

Solution: We first note that the base case gives us that T(a) = c, so we can
rewrite the equation as

T(n) = T(n − a) + 2c = T(n − a) + d

(renaming the constant 2c as d).
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Now unfolding,

T(n) = T(n − a) + d

= T(n − 2a) + 2d

= T(n − 3a) + 3d

= · · · repeating n/a times

= T(n − n
a

a) +
n
a

d

= T(0) +
n
a

d

=
d
a

n + c

∈ O(n)
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4. A priority queue class

In this section, you will implement an imperative priority queue class, along with an
extension of it that can revert (that is, undo) the most recent selection from the priority
queue.

For simplicity, we’ll stick to integer priority queues, with the highest priority elements
being the smallest integers. We provide a class type prioqueue_t for integer priority
queues:

class type prioqueue_t =

object

method add : int -> unit (* add an int to the priority queue *)

method select : int option (* return the smallest element after

removing it from the priority queue *)

end ;;

Problem 14. [2 points] Why is it appropriate for the select method to return an int option
rather than an int?

Solution: An attempt to select from an empty priority queue is an error
condition; there is no int to return. Using an option type allows marking
this condition by returning None.
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Problem 15. [9 points] Provide an implementation of the prioqueue_t class type, a prioqueue
class, by filling in the box below. (You can keep the implementation extremely simple. Lists are
fine; no need for binary trees or heaps.)

class prioqueue : prioqueue_t =

object (this)

end ;;
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Solution:
class prioqueue : prioqueue_t =

object

val mutable elements = []

method add (x : int) : unit =

elements <- List.sort compare (x :: elements)

method select =

match elements with

| [] -> None

| top :: rest ->

elements <- rest;

Some top

end ;;
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Next, we want to augment the priority queue implementation with an extra method
revert, which when invoked adds back onto the priority queue the last element (if any)
that was selected. (If nothing had ever been selected, the priority queue is left unchanged.)
Once an element is reverted back onto the priority queue, it should no longer be available
to be reverted again; that is, a second revert leaves the priority queue unchanged. Here is
an example of the behavior of the prioqueue_revert class:

# let p = new prioqueue_revert ;;

val p : prioqueue_revert = <obj>

# let _ = p#add 5;

p#add 2;

p#add 4 ;;

- : unit = ()

# p#select ;;

- : int option = Some 2

# p#revert ;;

- : unit = ()

# p#select ;;

- : int option = Some 2

# p#select ;;

- : int option = Some 4

# p#revert ;;

- : unit = ()

# p#select ;;

- : int option = Some 4

# p#select ;;

- : int option = Some 5

# p#revert ;;

- : unit = ()

# p#revert ;;

- : unit = ()

# p#select ;;

- : int option = Some 5

# p#select ;;

- : int option = None

# p#revert ;;

- : unit = ()

# p#select ;;

- : int option = None
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Problem 16. [5 points] Provide a class type definition prioqueue_revert_t that extends
prioqueue_t with the revert method.

Solution:
class type revert_prioqueue_t =

object

inherit prioqueue_t

method revert : unit

end

Problem 17. [8 points] Define a class prioqueue_revert that satisfies prioqueue_revert_t.

Solution:
class revert_prioqueue : revert_prioqueue_t =

object

val mutable prev = None

inherit prioqueue as super

method! select =

let sel = super#select in

prev <- sel;

sel

method revert =

match prev with

| None -> ()

| Some v -> super#add v;

prev <- None

end

End of exam.

Total points: 75
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Extra space for answers
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