
CS 51: Introduction to Computer Programming II
First Midterm Examination
Spring, 2018

You have 90 minutes to complete this exam.
This is an open-book exam: You are free to use books and notes in preparing your solutions for

this exam. However, no electronic devices of any kind may be used.
The exam is in three sections comprised of 19 questions. Numbers in brackets like this

[nnn points] are the points (out of 86 total) allocated to the problem and may provide a very
approximate recommendation for allocating time.

Write the answers to all problems in the boxes provided. Write with a pen (or a very dark pencil)
as we will be scanning your exams for grading. Write clearly, as we can and will only grade what
we can unambiguously read. The exam packet is intentionally stapled in the lower left corner to
facilitate the scanning process. Do not remove the staple or remove any pages from the exam packet.
Anything written outside of the provided boxes will not be graded. If additional room is needed for
an answer, make a note in the box provided and write the remainder of your answer in one of the
boxes at the back of the examination.

Many of the problems ask you to define something or write code to do something. Throughout the
exam, when we ask you to define a value or function or type or class or module, we mean that you
should provide a top-level OCaml definition written in well-formed, idiomatic OCaml using the
appropriate OCaml definitional construct (let, type, class, module, etc.). Your answers will be
graded firstly on the well-formedness and correctness of the code, but in keeping with the course’s
goals, we may also secondarily consider the many other dimensions of code quality – including
design and style issues – in evaluating your answers.

To allow for anonymous grading of the exam, please write your name and ID number in the boxes
below on this page [0.5 points], and your ID number (but not your name) in the box provided at
the top of all subsequent odd-numbered pages [0.5 points].

By filling in your name and ID number below, you affirm your awareness of the stan-
dards of the Harvard College Honor Code.

Your name:

Your Harvard ID number:
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1. Types and type inference

Problem 1. [12 points] For each of the following OCaml function types define a function (with
no explicit typing annotations, that is, no uses of the : operator) for which OCaml would infer that
type. The expressions need not be practical or do anything useful; they need only have the requested
type. Do not make use of anything from any library modules other than Pervasives. Provide
your answers in the boxes provided below. (The first problem is done for you as an example.)

(1) bool -> unit

let f b = if b then () else () ;;

(2) ’a option list -> bool

(3) ’a list -> ’a option
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(4) (bool option -> bool) -> bool

(5) ’a -> ’a -> ’b
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Problem 2. [12 points] For each of the following function definitions, give a typing for the
function that provides its most general type (as would be inferred by OCaml) or explain briefly
why no type exists for the function. (The first problem is done for you as an example.)

(1) let f1 x =

x +. 42. ;;

f1 : float -> float

(2) let f2 x y =

x y y ;;
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(3) let f3 x y =

x (y y) ;;

(4) let rec f4 x =

match x with

| None

| Some 0 -> None

| Some y -> f4 (Some (y-1)) ;;
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(5) let f5 x y =

if x then [x]

else [not x; y] ;;
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2. Defining some functions

Problem 3. [4 points] Define a function even that returns true if its integer argument is even,
and false otherwise.

Problem 4. [2 points] What is the type of even?

Problem 5. [3 points] Define a function odd that returns true if its integer argument is odd,
and false otherwise. You’ll want to make use of the function even you just defined in Problem 3.
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The OCaml documentation for the Listmodule describes a function called partition:

For example, using the even function from Problem 3, the following should hold:

# partition even [1; 2; 3; 4; 5; 6; 7] ;;

- : int list * int list = ([2; 4; 6], [1; 3; 5; 7])

Problem 6. [6 points] Give your own definition of the partition function, implemented directly
without use of any library functions except for those in the Pervasives module.
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Figure 1. Alexander Calder, “Blue and yellow among reds”, 1964.

3. Mobiles

The artist Alexander Calder (1898–1976) is well known for his distinctive mobiles, sculp-
tures with different shaped objects hung from a cascade of connecting metal bars. An
example is shown in Figure 1.

His mobiles are made with varying shapes at the ends of the connectors – circles,
ovals, fins. The exquisite balance of the mobiles depends on the weights of the various
components. In the next sections of the exam, you will model the structure of mobiles as
binary trees to allow determining if a Calder-like mobile design is balanced or not.
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Let’s start with the objects at the ends of the connectors. For our purposes, the important
properties of an object will be its shape and its weight (in arbitrary units; you can interpret
them as pounds).

Problem 7. [2 points] Define a weight type consisting of a single floating point weight.

Problem 8. [3 points] Define a shape type, a variant type that allows for three different shapes:
circles, ovals, and fins. (No information beyond the type of shape need be provided for.)
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Problem 9. [3 points] Define an obj type that will be used to store information about the objects
at the ends of the connectors, in particular, their weight and their shape.

Problem 10. [2 points] To demonstrate the use of the types you’ve just defined, define a value
shape1 : obj that represents an oval of weight 8.
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4. A binary tree signature and functor

A mobile can be modeled as a kind of binary tree, where the leaves of the tree, rep-
resenting the objects, are elements of type obj, and the internal nodes, representing the
connectors, have a weight, and each internal node (connector) connects two submobiles.
Rather than directly writing code for a mobile type, though, we’ll digress to build a more
general binary tree module, and then model mobiles using that.

An appropriate signature BINTREE for a simple binary tree module might be the follow-
ing:

module type BINTREE =

sig

type leaft (* the type for the leaves of the tree *)

type nodet (* the type for the internal nodes of the tree *)

type tree (* the type for the trees themselves *)

val make_leaf : leaft -> tree

val make_node : nodet -> tree -> tree -> tree

val walk : (leaft -> ’a) -> (nodet -> ’a -> ’a -> ’a) -> tree -> ’a

end ;;

This module signature specifies separate types for the leaves of trees and the internal
nodes of trees, along with a type for the trees themselves; functions for constructing leaf
and node trees; and a single function to “walk” the tree. (We’ll come back to the walk
function later.)

In addition to the signature for binary tree modules, we would need a way of gener-
ating implementations of modules satisfying the BINTREE signature, which we’ll do with
a functor MakeBintree. The MakeBintree functor takes an argument module of type
BINTREE_ARG that packages up the particular types for the leaves and nodes, that is, the
types to use for leaft and nodet. The following module signature will work:

module type BINTREE_ARG =

sig

type leaft

type nodet

end ;;
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Problem 11. [6 points] Define the header of a functor named MakeBintree to generate modules
satisfying the BINTREE signature by filling in the template below, keeping in mind the need for
users of the functor-generated modules to access appropriate aspects of the generated trees.

module

=

struct

(* ... the implementation would go here,

but you don’t have to worry about that ... *)

end ;;
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5. Mobiles as binary trees

Using this functor, you can now generate a Mobilemodule, which has objs at the leaves
and weights at the interior nodes.

Problem 12. [5 points] Define a module Mobile using the functor MakeBintree.

Problem 13. [2 points] You’ve just used the MakeBintree functor without ever seeing its
implementation. Why is this possible?
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Figure 2. A simple Calder-style mobile. The depicted mobile has two con-
nectors and three objects (an oval and two fins). The connectors each weigh
1.0, and the objects’ weights are as given in the figure.

You can now build a representation of a mobile using the functions that the Mobile
module makes available.

Problem 14. [4 points] Define a value mobile1 of type Mobile.tree that represents a mobile
structured as the one in Figure 2.
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The walk function, of type (leaft -> ’a) -> (nodet -> ’a -> ’a -> ’a) -> tree
-> ’a, is of special interest, since it is the sole method for performing computations over
these binary trees. The function is a kind of fold that works over trees instead of lists. It
takes two functions – one for leaves and one for nodes – and applies these functions to a
tree to generate a single value. The leaf function takes a leaft and returns some value of
type ’a. The node function takes a nodet and the two ’a values recursively returned by
walking its two subtrees and computes the value for the node itself.

For example, we can use walk to define a function size that counts how many objects
there are in a mobile. The function uses the fact that leaves are of size 1 and the size of a
non-leaf is the sum of the sizes of its subtrees.

let size mobile =

Mobile.walk (fun _leaf -> 1)

(fun _node left_size right_size -> left_size + right_size)

mobile ;;

Problem 15. [3 points] What is the type of size?

Problem 16. [2 points] Use the fact that the walk function is curried to give a slightly more
concise definition for size.
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Problem 17. [5 points] Use the walk function to implement a function shape_count : shape

-> Mobile.tree -> int that takes a shape and a mobile (in that order), and returns the number
of objects in the mobile that have that particular shape.
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A mobile will said to be balanced if every connector has the property that the total weight
of all components (that is, objects and connectors) of its left submobile is the same as the
total weight of all components of its right submobile. (In actuality, we’d have to worry
about other things like the relative lengths of the arms of the connectors, but we’ll ignore
all that.)

Problem 18. [2 points] Is the mobile shown in Figure 2 balanced? Why or why not?

Problem 19. [7 points] Implement a function balance : Mobile.tree -> weight option

that takes a mobile, and returns None if the argument mobile is not balanced, and Some w if the
mobile is balanced, where w is the total weight of the mobile.
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End of exam.

Total points: 86
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Extra space for answers

Reference this area with “See box 1”

Reference this area with “See box 2”



Your HUID⇒ 21

Reference this area with “See box 3”

Reference this area with “See box 4”
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Reference this area with “See box 5”

Reference this area with “See box 6”
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