
CS 51: Introduction to Computer Programming II
First Midterm Examination
Spring, 2017

This is an open-book exam: You are free to use books and notes in preparing your solutions for
this exam. However, no electronic devices of any kind may be used. We have provided a separate
handout with reference material – a cheat sheet on OCaml – which you need not turn in.

The exam is in three sections comprised of 14 questions. Numbers in brackets like this
[nnn points] are the points (out of 90 total) allocated to the problem and may provide a very
approximate recommendation for allocating time.

Write the answers to all problems in the boxes provided. Write clearly, as we can and will
only grade what we can unambiguously read. Write with a dark pencil or pen as we will be
scanning your exams for grading. The exam packet is intentionally stapled in the lower left corner
to facilitate the scanning process. Do not remove the staple or remove any pages from the exam
packet. Anything written outside of the provided boxes will not be graded. If additional room is
needed for an answer, make a note in the box provided and write the remainder of your answer in
one of the boxes at the back of the examination.

Many of the problems ask you to define something or write code to do something. Throughout
the exam, when we ask you to define a value or function or type or class or module, we mean that
you should provide a top-level OCaml definition written in idiomatic OCaml using the appropriate
OCaml definitional construct (let, type, class, module, etc.).

To allow for anonymous grading of the exam, please write your name and ID number in the boxes
below on this page [0.5 points], and your ID number (but not your name) in the box provided at
the top of all subsequent pages [0.5 points].

Your name:

Your Harvard ID number:

2 Your HUID⇒

1. Type inference

Problem 1. [12 points] For each of the following OCaml function types define a function (with
no explicit typing annotations, that is, no uses of the : operator) for which OCaml would infer that
type. The expressions need not be practical or do anything useful; they need only have the requested
type. Do not make use of anything from any library modules other than Pervasives. Provide
your answers in the boxes provided below. (The first problem is done for you as an example.)

(1) bool -> unit

let f b = if b then () else () ;;

(2) int -> int -> int option

(3) (int -> int) -> int option

3 Your HUID⇒

(4) ’a -> (’a -> ’b) -> ’b

(5) ’a option list -> ’b option list -> ’a * ’b list

4 Your HUID⇒

Problem 2. [10 points] For each of the following function definitions, give a typing for the
function that provides its most general type (as would be inferred by OCaml) or explain briefly
why no type exists for the function. (The first problem is done for you as an example.)

(1) let f1 x =

x +. 42. ;;

f1 : float -> float

(2) let f2 x y =

match x with

| (w, z) -> if w then y z else w ;;

5 Your HUID⇒

(3) let rec f3 x =

match x with

| [] -> f3

| h :: t -> raise Exit ;;

(4) let f4 x =

if x then (x, true)

else (true, not x) ;;

6 Your HUID⇒

Problem 3. [4 points] Provide a more succinct definition of the function f4 from Problem 2(4),
which defines f4 to have the same type and behavior.

7 Your HUID⇒

2. Walking trees

Problem 4. [8 points] The following code was intended to define a data type ’a tree for a kind of
polymorphic binary trees with values stored at some of the leaves and with other leaves left empty,
plus a function sum_tree : int tree -> int that returns the sum of all the integers stored
in an integer tree. However, it contains errors that will generate error messages and warnings in
several places. Identify as many such errors and warnings as there are (but no more), giving line
numbers for each and explaining what each problem is as specifically as you can.

1 let ’a tree =

2 | Empty

3 | Leaf of ’a

4 | Node of (tree, tree) ;;

5

6 let sum_tree (t : int tree) =

7 match t with

8 | Leaf x -> x

9 | Node (l, r) -> (sum_tree l) + (sum_tree r) ;;

8 Your HUID⇒

Problem 5. [6 points] Write the correct type definition for the ’a tree data type from the
previous problem. Make sure it is consistent with how the type is used in the walk function below.

Consider the following function named walk that “walks” over a tree and applies a
binary function (the argument f) to the children of a node in the tree – a kind of “fold”
operation for trees. At the leaves, it returns whatever value is stored there, and for empty
nodes it returns a default value (the argument default).

let rec walk f default (t : ’a tree) =

match t with

| Empty -> default

| Leaf x -> x

| Node (l, r) -> f (walk f default l) (walk f default r) ;;

Problem 6. [4 points] What type would OCaml infer for the walk function as defined above?
Write the type as a single OCaml type expression.

9 Your HUID⇒

Problem 7. [6 points] Notice that each time walk is recursively called, it passes along the same
first two arguments. Write a version of walk that uses a local function to avoid this redundancy.

Problem 8. [4 points] Use the walk function in writing a definition for a function
sum_tree : int tree -> int that sums up the values stored at all of the leaves of an int
tree.

10 Your HUID⇒

Problem 9. [4 points] Use the walk function in writing a definition for a function
max_tree : int tree -> int that returns the maximum value stored at the leaves of a tree.
You’ll want to think carefully about what integer max_tree should return for the Empty tree that
makes your code as simple as possible.

11 Your HUID⇒

3. An ADT for intervals

A good candidate for an abstract data type is the interval. Abstractly speaking, an
interval is a region between two points, where all that is required of points is that we be
able to compare them as an ordering (so that we have a well-defined notion of “between”).
That is, points ought to obey the following signature, which may look familiar, as you’ve
seen it in other contexts:

module type COMPARABLE =

sig

type t

type order = Less | Equal | Greater

val compare : t -> t -> order

end ;;

Natural operations over intervals are the construction of an interval between two points,
the extraction of the endpoints of an interval, taking the union of two intervals (the smallest
interval containing both), and determining the relation between two intervals. Here is a
signature that provides for this functionality.

module type INTERVAL =

sig

type point

type interval

type relation = Disjoint | Overlaps | Contains

(* Returns the interval between two points *)

val interval : point -> point -> interval

(* Returns the endpoints of an interval as a pair

with the first point less than the second. *)

val endpoints : interval -> point * point

(* Returns the union of two intervals *)

val union : interval -> interval -> interval

(* Returns the relation holding between two intervals *)

val relation : interval -> interval -> relation

end ;;

The possible relations between two intervals are depicted in Figure 1. (For the interval
arithmetic cognoscenti, we’ve left out many details, such as whether intervals are open or
closed; more fine-grained relations; and many other useful operations on intervals. These
issues are beyond the scope of this problem.)

12 Your HUID⇒

Overlaps

Contains

Disjoint

Figure 1. A diagrammatic depiction of the possible relations holding be-
tween two intervals. In the diagram, the gray intervals in the three groups
below the black interval are in the “overlaps” (top 2), “contains” (next 5),
and “disjoint” (bottom 3) relations, respectively, with the black interval at
top. The vertical dotted lines depict the endpoints of the black interval.

13 Your HUID⇒

Problem 10. [6 points] Fill in the box to complete the skeleton of a functor named MakeInterval
for generating implementations of the INTERVAL signature based on modules satisfying the
COMPARABLE signature. (We’ve purposefully left the implementation out.)

module

=

struct

(* ... the implementation would go here ... *)

end ;;

Problem 11. [8 points] An appropriate module satisfying COMPARABLE for the purpose of gener-
ating discrete time intervals would be one where the type is int, with an appropriate comparison
function. Define a module named DiscreteTime satisfying COMPARABLE where the type is int.
Make sure the type is accessible outside the module.

14 Your HUID⇒

Problem 12. [3 points] Now use the functor MakeInterval to define a module
DiscreteTimeInterval that provides interval functionality over discrete times as defined by
the module DiscreteTime above.

Problem 13. [6 points] The intersection of two intervals is only well-defined if the intervals are
not disjoint. Assume that the DiscreteTimeIntervalmodule has been opened (as we’ve already
done for you in the box below), allowing you to make use of everything in its signature. Now, define
a function intersection : interval -> interval -> interval option that takes two
intervals and returns None if they are disjoint and otherwise returns their intersection (embedded
appropriately in the option type).

open DiscreteTimeInterval ;;

15 Your HUID⇒

Problem 14. [8 points] Provide three different unit tests that would be useful in testing the
correctness of the DiscreteTimeInterval module. We’ve provided some context in which your
tests should appear. You can use CS51.verify or assert as you prefer.

open CS51 ;;

let test () =

let open DiscreteTimeInterval in

Printf.printf "tests completed\n" ;;

End of exam.
Now off to River Run.

Total points: 90

16 Your HUID⇒

Extra space for answers

Reference this area with “See box 1”

Reference this area with “See box 2”

17 Your HUID⇒

Reference this area with “See box 3”

Reference this area with “See box 4”

18 Your HUID⇒

Reference this area with “See box 5”

Reference this area with “See box 6”

	1. Type inference
	2. Walking trees
	3. An ADT for intervals
	Extra space for answers

