labD.ml Mon Jan 27 18:53:45 2025 1

Cs51 Lab D
Improving Debugging Skills

(* Objective: In this lab, you’ll improve your debugging skills by
applying fundamental debugging ideas to debugging an implementation of
set operations (union, intersection, etc.).

LR i i i b b b b i b i b R S b i b S b i b i i b S i b B b b S b R b b b b b b b i b a2 i i 2 i b 4

In this lab, sets of integers will be represented as ‘int
list's whose elements are in sorted order with no
duplicates. All functions can assume this invariant and should

deliver results satisfying it as well.
LR R i e b b dh I b dh dh b 2R dh b b dh b dh dh b b dh Sb b SR dh b 2 b S 2R dh b 2 dh Sb o b i b S IR b dh db b 2 dh I o db db b b g i

In the code that follows, some functions may have bugs, so that their
behavior may not match the intended behavior described in the
comments. Your job is to find and fix all of the bugs.

Part 0: Important aspects of debugging

You may not have thought explicitly about the debugging process, but
doing so can provide you with valuable skills in the process. Here are
some of the major aspects of the debugging process.

Identification

Read error messages in detail. They often provide not just the
nature of the error, but an approximate location.

Set up unit tests for individual functions. Unit tests can
identify bugs in your code by finding cases that don’t match
the behavior you intended. Try to specify unit test cases that
cover all of the important paths through the code. A good
technique is to put the unit tests in a separate file that
references the file with the functions to be tested. Then,
whenever you make changes to the functions, you can rerun the
test file to make sure that you haven’t introduced bugs in
previously working code.

Localization

When you first identify a bug, you may not know where in the
code base the bug actually lives. You’ll need to localize the
bug -- finding its location in the code base.

In tracking down problems in larger codebases, eliminate
portions of the code to generate the minimal codebase that
demonstrates the problem. Breaking the code into smaller parts
can allow localization to one of the parts, as they can be
unit-tested separately.

Simplification
When confronted with an error exhibited on a large instance,
try to simplify it to find the minimal example that exhibits
the problem.

Reproduction
Try alternate examples to see which ones exhibit the problem.

The commonalities among the examples that exhibit the problem
can give clues as to the problem.

labD.ml Mon Jan 27 18:53:45 2025 2

Diagnosis

Verify that invariants that should hold in the code actually
do, with assertions or other constructs. (The ‘Absbook.verify®
function can be especially useful in verifying invariants of
the arguments and return value.) Conduct experiments

to test your theory of what has gone wrong.

Correction

Generate git commits to save a version of the code so that you
can confidently make changes to the code while you are
experimenting, knowing that you’ll be able to return to
earlier versions.

Maintenance

Code that was once working can become buggy as changes are
mode either to the code itself or to code that is uses. It’s
thus helpful to retest code when changes are made to it or its
environment. Fortunately, unit test files are ideal for this
process. Rerunning the unit tests liberally allows us to
verify that working code hasn’t regressed to a buggy state.
(The process is referred to in the literature as "regrsssion
testing" for this reason. See
<https://en.wikipedia.org/wiki/Regression_testing>.)

To get you started on debugging, we’ve placed a few unit tests for
some of the functions in the file ‘labD_tests.ml‘. Compile and run
these tests to see how the functions are working so far.

% ocamlbuild -use-ocamlfind labD_tests.byte
% ./labD_tests.byte

What do you notice? Does this give you an idea on where to start
debugging?

Part 1: Some utilities for checking the sorting and no-duplicates

conditions.
*)

(* is_sorted 1lst —-- Returns ‘true' if and only if ‘1st' is a sorted
list *)
let is_sorted (lst : ’'a list) : bool =

lst = List.sort Stdlib.compare 1lst ;;

(* dups_sorted 1lst —-- Returns the number of duplicate elements in
‘1st', a sorted list of integers. For example

dups_sorted [1;2;5;5;5;5;5;5;6;7;7;91 ;;

- : int = 6
*)
let rec dups_sorted (lst : ’'a list) : int =
match 1lst with
[1 -> 0
[_L] -—> 0
first :: second :: rest ->
if first = second then 1 else 0

+ dups_sorted rest

(* HINT: The ‘dups_sorted' function already fails two of the tests in
the testing file ‘labD_tests.ml‘. Examine the failing cases one at
a time. What is it about the first case that causes it to fail? Can

labD.ml Mon Jan 27 18:53:45 2025 3

you find a simpler case that fails? What is the minimal example
that fails? Does that help you repair the first buggy test case?
Then turn your attention to the second case. Did you fix that bug
too, or is it still around? If it’s still around, you’ll need to
fix that too. *)

(* is_set 1lst —- Returns ‘true' if and only if 1lst represents a set,
with no duplicates and elements in sorted order. ¥*)
let is_set (1lst : "a list) : bool =

is_sorted lst && dups_sorted 1lst = 0 ;;

(*

Part 2: Set operations —-- member, union, and intersection

Below we provide code for computing membership, intersections, and
unions of sets represented by lists with the stated invariant.

Check out the unit tests for these in ‘labD_tests.ml‘. Augment the

tests until you’re satisfied that you’ve fully tested these functions,

making any needed changes as you go.

We’1ll test them further on larger examples in the next part, Part
3.

*)

(* member elt set —-- Returns ‘true' if and only if ‘elt' is an element

of ‘set' (represented as above). Search can stop early based on
sortedness of ‘set‘'. ¥*)
let rec member elt set =
match set with

[1] —> false

hd :: tl —>
if elt = hd then true
else if elt < hd then false
else member elt tl ;;

(* union setl set2 —-- Returns a list representing the union of the
sets ‘setl' and ‘set2' ¥*)
let rec union sl s2 =
match sl, s2 with

[1, 1 —> [1
_hd :: _tl1, [] -> sl
[1, _hd :: _tl1 -> s2
hdl :: tl1l1, hd2 :: tl2 ->
if hdl < hd2 then
hdl :: union tll s2
else
hd2 :: union tl2 sl ;;

(* HINT: This function has no tests in the testing file. Maybe you
should add some. *)

(* intersection setl set2 —-- Returns a list representing the
intersection of the sets ‘setl' and ‘set2‘' *)
let rec intersection sl s2 =
match sl, s2 with

[1, — —> 1[I
_, [1 —=> 11
hdl :: tl1l1, hd2 :: tl2 ->
if hdl = hd2 then hdl :: intersection tll tl2

else if hdl > hd2 then intersection tll s2
else intersection sl tl2 ;;

(*

Part 3: Scaling up the testing

labD.ml Mon Jan 27 18:53:45 2025 4

The file ‘labD_examples' contains a couple of larger examples of sets
represented as lists (‘examplel’ and ‘example2‘'). The ‘labD_tests.ml‘
file contains a few tests based on these larger examples, which are
commented out at the moment. Uncomment them now and rerun the unit
tests. What do you notice?

More bugs to debug. Where do you think the problems lie? Remaining
bugs in the functions above? In the examples? In the tests themselves?

You’re on your own to figure out what’s going on and correct the

problems, wherever they might be.
*)

