lab7_partl.ml Mon Jan 27 18:53:08 2025 1
(*
CS51 Lab 7

Modules and Abstract Data Types
*)

(* Objective: This lab practices concepts of modules, including files
as modules, signatures, and polymorphic abstract data types.

There are 4 total parts to this lab. Please refer to the following
files to complete all exercises:

-> lab7_partl.ml -- Part 1: Implementing modules (this file)
lab7_part2.ml -- Part 2: Files as modules
lab7_part3.ml —-- Part 3: Polymorphic abstract types and

Interfaces as abstraction barriers
*)

(*

Part 1: Implementing Modules

*Modules* are a way to package together and encapsulate types and values
(including functions) into a single discrete unit.

By applying a *signature* to a module, we guarantee that the module
implements at least the values and functions defined within it. The
module may also implement more as well, for internal use, but only those
specified in the signature will be exposed and available outside the
module definition. This form of abstraction, information hiding,
implements the edict of compartmentalization.

In this part, you’ll revisit the "weather" example from lab 6 part

1. Recall that in that lab, you defined some algebraic data types for
representing aspects of the season and weather, along with some
functions to extract the precipitation amount and to generate a string
description of the weather. We can define a module signature for the

types and functions from that lab as follows:
*)

module type WEATHER = sig
type season = Spring Summer Autumn Winter

type condition =

Sunny
Rainy of int (* precipitation in mm *)
Snowy of int (* precipitation in mm *)
type weather_ status = {season : season; condition : condition}

val describe_weather : weather_status -> string
val precipitation_amount : condition -> int
end ;;

(* Notice that we’ve left out the function ‘season_to_string', since
it was really just a helper function for ‘describe_weather'. There’s
no reason that users of the module should need to use this

function. *)

Exercise 1A: Complete the implementation of a module called ‘Weather®
that satisfies the signature above. Feel free to make use of your
solution or the staff solution for lab 6 part 1. *)

(* (You may wonder, what’s that ‘nan' in our dummy definition below? The
value ‘nan‘' stands for "not a number" and is an actual value of the
‘float' type, as dictated by the IEEE Floating Point standard described



lab7_partl.ml Mon Jan 27 18:53:08 2025 2

at <https://en.wikipedia.org/wiki/IEEE_754>. We’re using it here as a
temporary value pending your putting in appropriate ones.) *)

module Weather : WEATHER = struct
type season = Spring Summer Autumn Winter

type condition =
Sunny
Rainy of int
Snowy of int

type weather_ status = {season : season; condition : condition}
let describe_weather (status : weather_status) : string =
failwith "describe_weather not implemented”
let precipitation_amount (condition : condition) : int =
failwith "precipitation_amount not implemented"
end ;;

Exercise 1B: Now that you’ve implemented the ‘Weather' module, use it
to generate a string description of a rainy winter day with 20 mm of
rain. That is, define a value ‘example : string' that uses

the ‘Weather' module to generate its string value

"It’s raining in winter. Precipitation: 20 mm."

(Use explicit module prefixes for this exercise, not global or local
opens.)

let example =
"replace this string with an appropriate computation" ;;

Exercise 1C: Reimplement ‘example’ from 1B above, now as
‘example_local_open', but using a "local open" to write your
computation in a more succinct manner.

let example_local_open () =
"replace this string with an appropriate computation" ;;



