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expression:




expression: a meaningtul combination
of symbols







meaning:




meaning: that aspect of expressions
the identity of which preserves truth
under substitution




The indiscernibility of identicals

That A is the same as B
signifies that the one
can be substituted for
the other, salva veritate,
in any proposition
whatever.

— Gottfried Wilhelm Leibniz

Gottfried Wilhelm Leibniz




3 +4 + 5




3 +4 + 5

- 7 + 5




3 +4 + 5

= 7 + 5




structure:




structure: the arrangement of parts in
a complex whole




let rec gcd euclid a b =
if b =20
then a
else gcd euclid b (a mod b) ;;
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let rec gcd euclid a b = 1f b = 0
then a else gcd euclid b (a mod b)

°
4

°
4
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3 +

4 * 5
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3 + 4 * 5

= 7 * 5
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3 +

4 * 5

-

7 * 5

35
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3 + 4 * 5

- 3 + 20

23
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abstract syntax

+

N

3 *
N
4 5

*

N
+ 5

3 4




12

concrete syntax

3 + 4 * 5

(3 + 4) * 5

abstract syntax

+

N

3 *
N
4 5

*

N
+ 5

3 4




concrete syntax abstract syntax

+

# 3 + 4 x5 ;.

- : int = 23 3/\*
N
4 5

*

RN

# (3 +4) *5 ;; + 5

- ¢ 1nt 35

3 4
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value:
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value: a result determined by
calculation or measurement
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35
true

fun X

-> x + 1

an integer value
a boolean value

a function value
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type:
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type: a set of things having traits or
characteristics in common that
distinguish them as a group
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#include <stdio.h>

#include <stdbool.h>

int main() {

int name = "Gold Hill";
int est = 1859;
bool us = true;

int sum = name + est + us;

printf("value : %d\n", sum);
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OCaml is a typed language

Expressions have types
Statically typed:

* type of an expression can be determined just by looking
at the code

Strongly typed:

* interpreter enforces type abstraction

e cannot use an integer as a record, function, string, etc.
Implicitly typed:

e interpreter can determine the types of most expressions
on its own
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# "three" + 4 * 5 =

r 7

Error: This expression has type string

but an expression was expected of type
int

21
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# "three" + 4 * 5 ;.

Error: This expression has type string
but an expression was expected of type
int

# 3.0 + 4.0 ;;

Error: This expression has type float but
an expression was expected of type int
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# "three" + 4 * 5 ;.

Error: This expression has type string
but an expression was expected of type
int

# 3.0 + 4.0 ;;

Error: This expression has type float but
an expression was expected of type int

# (+) i;

— ¢ 1nt -> int -> int = <fun>
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# "three" + 4 * 5 ;.

Error: This expression has type string
but an expression was expected of type
int

# 3.0 + 4.0 ;;

Error: This expression has type float but
an expression was expected of type int
# (+) i;

- : int -> int -> int = <fun>

# 3.0 +. 4.0 ;:

- ¢ float = 7.
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function:




22

function: a determinate mapping from
one or more inputs to an output
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fun x

-> 2 * x
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fun x -> 2 * x

introduces a variable

naming the argument
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fun x

-> 2 * X

uses the argument by

invoking its name
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fun x

fun X

-> 2 * x

-> if x < 3 then X else

X * X




Function application

In C:
¢ £(3)
¢ £(3, 4, 5)
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8-7 Functions Defined by Equations

Objective  To define a function by using equations.

Tickets to the senior class play cost $5. Production expenses are $500. The
class’s profit, p will depend on n, the number of tickets sold.
profit = $5 « (number of tickets) — $500 or p = 51 — 500
The equation p = 51 — 500 describes a correspondence between the number of
tickets sold and the profit. This correspondence is a function whose domain is
the set of tickets that could possibly be sold.
domain D = {0, 1, 2, .. .}.
The range is the set of profits that are possible, including
or losses, if too few tickets are sold.
range R = {—500, —495, —490, . . .}.
If we call this profit function P, we can use arrow notation and write
the rule P: n— 51 — 500,
which is read ‘‘the function P that assigns 51 — 500 to #°" or “‘the function P
that pairs n with 51 — 500.”” We could also use functional notation:
P(n) = 5n — 500
which is read “‘P of n equals Sn — 500" or ‘‘the value of P at n is 5n — 500.”
To specify a function completely, you must describe the domain of the
function as well as give the rule. The numbers assigned by the rule then form
the range of the function. '

negative profits,”

Example 1 List the range of
g x—>4+3x— x? x| 443 -2
if the domain D = {—1, 0, 1, 2}.

~1 | 4+3(-)=(-1>=0

Solution  In 4 + 3x — x° replace x with each 0] 4+30)-0>=4
member of D to find the members la+3m-17=6
of the range R.

- R=10.4, 6} Answer

[}

4+32)—-22=6

Note that the function g in Example 1 assigns the number 6 to both 1
and 2. In listing the range of g, however, you name 6 only once.

Members of the range of a function are called values of the function. In
Example 1, the values of the function g are 0, 4, and 6. To indicate that the
function g assigns to 2 the value 6, you write

8(2) =6,

which is read ‘g of 2 equals 6 or “‘the value of g at 2 is 6.”” Note that g(2)
is not the product of g and 2. It names the number that g assigns to 2.

Introduction to Functions 379

Brown, Dolciani, Sorgenfrey, and Cole, Algebra: Structure and Method, 2000, page 379.
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domain D =1{0, 1, 2, . . .}.
The range is the set of profits that are possible, including *‘negative profits,’
or losses, 1f too few tickets are sold.
range R = {—500, —495, —490, . . .}.

If we call this profit function P, we can use arrow notation and write
the rule P: n— 51 — 500,
which is read ‘‘the function P that assigns Sn — 500 to n’” or ‘‘the function P
that pairs n with 517 — 500.”" We could also use functional notation:

P(n) = 5n — 500

which 1s read “*P of n equals 5n — 500" or ‘‘the value of P at n is 5n — 500.”

To specify a function completely, you must describe the domain of the
function as well as give the rule. The numbers assigned by the rule then form
the range of the function. '

»

b

Example T List the range of
gix—4+3x—x° x| 4+ 3y — 87
if the domain D = {—1, 0, 1, 2}.

1] 4+3(=1) = (1

. ~
€ o Ho st m Tee A 1 Do LA, DR VEPY MR I N 4 - ANy — N~ =
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domain D =1{0, 1, 2, . . .}.

»

The range is the set of profits that are possible, including *‘negative profits,’
or losses, 1f too few tickets are sold.
range R = {—500, —495, —490, . . .}.
If we call this profit function P, we can use arrow notation and write

the rule P: n—> 51 — 500,
which is read ‘‘the functigrr P IRAT assSIgns on — SO0t of gtion P
that pairs n with 57 — 5¢0.” We could also use functional notation: |

L P = 51— 500 “

which 1s read “*P of n eq 1.=.500"" o the v: of P at i is. Su— 500.”

To specify a function completely you must descnbe the domam of the
function as well as give the rule. The numbers assigned by the rule then form
the range of the function. '

Example T List the range of
g x—4+ 3 —x° x| 4+ 33—y
if the domain D = {—1, 0, 1, 2}.

1] 4+3(=1) = (1

. ~
€ o Ho st m Tee A 1 Do LA, DR VEPY MR I N 4 - ANy — N~ =
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gix— 4 + 3x — x> v | 4+ 3y — ¥
if the domain D = {—1, 0, I, 2}.

—1 | 443(=1) ~ (-

Solution In 4 + 3x — x~ replace x with each 0] 4+30)—0"=
member of D to find the members (4 - o
of the range R.

= {0, 4, 6} Answer

B3

44+ 302)— 2=

Note that the function g in Example 1 assigns the number 6 to both 1
and 2. In listing the range of g, however, you name 6 only once.

Members of the range of a function are called values of the function. In
Example 1, the values of the function g are 0 4, and 6. To indicate that the
function g assigns to 2 the valugsGTyomrwrite™.

which is read ‘‘g of 2 equals 6™%\Qr_‘‘the value o4 g at 2 is 6.”" Note that g(2)
is not the product of g and 2. It names the number that g assigns to 2.

Introduction to Functions
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Function application

In C:
e £(3)
e £(3, 4, 5)
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Function application

In C:
e £(3)
e £(3, 4, 5)

Leonhard Euler
—
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Function application

In C:
e £(3)
e £(3, 4, 5)

Alonzo Church
—————




Function application

In C:
e £(3)
e £(3, 4, 5)

In OCaml:
e f 3

Alonzo Church
————————————

29




29

Function application

In C:
e £(3)
e £(3, 4, 5)

In OCaml:
e f 3
e ((f 3) 4) 5

Alonzo Church
——————————————
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Function application

In C:
e £(3)
e £(3, 4, 5)

In OCaml:
e f 3
* ((f£ 3) 4) 5
e f 3 45

Alonzo Church
—————————————




29

Function application

In C:
e £(3)
e £(3, 4, 5)

In OCaml:
e f 3
* ((f£ 3) 4) 5
e f 3 45
¢ £(3, 4, 5)

Alonzo Church
————————————
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Semantics of function application

(fun x -=> x / 2) (3 * 5)

(fun x -=> x / 2) 15

15 / 2

1 1 1

7
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Semantics of function application

(fun x -=> x / 2) (3 * 5)
evaluate argument
(fun x -=> x / 2) 15 to value

15 / 2

1 1 1

7
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Semantics of function application

(fun x -=> x / 2) (3 * 5)

(fun x -=> x / 2) 15

15 / 2 substitute function's argument

variable with value being applied to

1 1 1
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definition:
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definition: the act of stating a precise
meaning
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let x
X * X

3 * 5

in
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local naming

let x = 3 * 5
X * X
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let

let

X

X X

15 in

evaluate definiendum

(3 * 5)toavalue
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X

name is only available in the

body of the let, its scope
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substitute definiens (x)
in body




32

substitute definiens (x)
in body
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let x
let x
x + 1

3 in
X * 2 1in
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let x

3 in
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let
let

let
X +

o
I

v

B
) o2
!

in
* 2 1in

* 2 1n




33

let
let
X +

let
X +

let
X +

X

3 in

* 2 1in

X * 2 1in

(x * 2) * 2 in
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let x
x + 1
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let
let
x + 1

let x
x + 1

let x

x + 1
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let in
let x = x * 2 in
x + 1

let
x + 1

o
Il
w
*
N
,5

let x = 6 in
x + 1

Names in the
definiendum refer

outside the scope of
the definition
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11 1 1

let half = fun x -> x / 2 in
half (3 * 5)

(fun x -=> x / 2) (3 * 5)

(fun x -=> x / 2) 15

15 / 2
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1 1 v 1

functions are values too

let half = fun x -> x / 2 in
half (3 * 5)

(fun x -=> x / 2) (3 * 5)

(fun x -=> x / 2) 15

15 / 2
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1 1 v 1

let half = fun x -> x / 2 in

half (3 * 5)

(fun x -=> x / 2) (3 * 5)

(fun x -=> x / 2) 15

15 / 2

evaluate argument

to a value
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1 1 v 1

let half

= fun x -> x / 2 in

half (3 * 5)

(fun x -=> x / 2) (3 * 5)

(fun x -=> x / 2) 15

15 / 2

substitute function argument

with value being applied to
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let double
double 5

fun x -> 2 * X 1in
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let double =
double|l 5

local naming of

a function

fun x ->

2 * x 1in
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let double = fun x -> 2 * X 1in

double 5

let double x =
double 5

2 * X 1n




let double = fun x -> 2 * X 1in

double 5

let double x = 2 * X in

double 5

“syntactic sugar”:
alternative concrete syntax for

programming convenience

36
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abstraction:
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abstraction: the process of viewing a
set of apparently dissimilar things as
instantiating an underlying identity
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Higher-order functions and functional programming
Polymorphism and generic programming

Handling anomalous conditions

Algebraic data types

Abstract data types and modular programming
Mutable state and imperative programming

Loops and procedural programming

Infinite data structures and lazy programming

Decomposition and object-oriented programming
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For next time (lab 1)...

Read chapters 1-6 (book.cs51.i0)
Read “On doing well in CS51”

Work on Problem Set 0 (installing
the required course software), due
Monday 11:59pm

Office hours to help you get
things installed listed in CS51
Canvas calendar
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Euclid of Alexandria

10O

csHh1l




