CS51: Abstraction and Design in Computation

2: Fundamentals of
functional languages

Now playing:
~ “Bucephalus Bouncing Ball”
.. Aphex Twin
“ Come To Daddy

John A. Paulsqn School of Engineering and Applied Sciences 22

Harvard University

expression
meaning
structure

value

type
function
definition

abstraction

expression:

expression: a meaningtul combination
of symbols

meaning:

meaning: that aspect of expressions
the identity of which preserves truth
under substitution

The indiscernibility of identicals

That A is the same as B
signifies that the one
can be substituted for
the other, salva veritate,
in any proposition
whatever.

— Gottfried Wilhelm Leibniz

Gottfried Wilhelm Leibniz

3 +4 + 5

3 +4 + 5

- 7 + 5

3 +4 + 5

= 7 + 5

structure:

structure: the arrangement of parts in
a complex whole

let rec gcd euclid a b =
if b =20
then a
else gcd euclid b (a mod b) ;;

10

let rec gcd euclid a b = 1f b = 0
then a else gcd euclid b (a mod b)

°
4

°
4

11

3 +

4 * 5

11

3 + 4 * 5

= 7 * 5

11

3 +

4 * 5

-

7 * 5

35

11

11

11

3 + 4 * 5

- 3 + 20

23

11

12

abstract syntax

+

N

3 *
N
4 5

*

N
+ 5

3 4

12

concrete syntax

3 + 4 * 5

(3 + 4) * 5

abstract syntax

+

N

3 *
N
4 5

*

N
+ 5

3 4

concrete syntax abstract syntax

+

3 + 4 x5 ;.

- : int = 23 3/*
N
4 5

*

RN

(3 +4) *5 ;; + 5

- ¢ 1nt 35

3 4

14

value:

14

value: a result determined by
calculation or measurement

15

35
true

fun X

-> x + 1

an integer value
a boolean value

a function value

16

17

type:

17

type: a set of things having traits or
characteristics in common that
distinguish them as a group

18

19

#include <stdio.h>

#include <stdbool.h>

int main() {

int name = "Gold Hill";
int est = 1859;
bool us = true;

int sum = name + est + us;

printf("value : %d\n", sum);

20

OCaml is a typed language

Expressions have types
Statically typed:

* type of an expression can be determined just by looking
at the code

Strongly typed:

* interpreter enforces type abstraction

e cannot use an integer as a record, function, string, etc.
Implicitly typed:

e interpreter can determine the types of most expressions
on its own

21

"three" + 4 * 5 =

r 7

Error: This expression has type string

but an expression was expected of type
int

21

21

"three" + 4 * 5 ;.

Error: This expression has type string
but an expression was expected of type
int

3.0 + 4.0 ;;

Error: This expression has type float but
an expression was expected of type int

21

"three" + 4 * 5 ;.

Error: This expression has type string
but an expression was expected of type
int

3.0 + 4.0 ;;

Error: This expression has type float but
an expression was expected of type int

(+) i;

— ¢ 1nt -> int -> int = <fun>

21

"three" + 4 * 5 ;.

Error: This expression has type string
but an expression was expected of type
int

3.0 + 4.0 ;;

Error: This expression has type float but
an expression was expected of type int
(+) i;

- : int -> int -> int = <fun>

3.0 +. 4.0 ;:

- ¢ float = 7.

22

function:

22

function: a determinate mapping from
one or more inputs to an output

23

fun x

-> 2 * x

23

23

fun x -> 2 * x

introduces a variable

naming the argument

23

fun x

-> 2 * X

uses the argument by

invoking its name

23

fun x

fun X

-> 2 * x

-> if x < 3 then X else

X * X

Function application

In C:
¢ £(3)
¢ £(3, 4, 5)

24

25

8-7 Functions Defined by Equations

Objective To define a function by using equations.

Tickets to the senior class play cost $5. Production expenses are $500. The
class’s profit, p will depend on n, the number of tickets sold.
profit = $5 « (number of tickets) — $500 or p = 51 — 500
The equation p = 51 — 500 describes a correspondence between the number of
tickets sold and the profit. This correspondence is a function whose domain is
the set of tickets that could possibly be sold.
domain D = {0, 1, 2, .. .}.
The range is the set of profits that are possible, including
or losses, if too few tickets are sold.
range R = {—500, —495, —490, . . .}.
If we call this profit function P, we can use arrow notation and write
the rule P: n— 51 — 500,
which is read ‘‘the function P that assigns 51 — 500 to #°" or “‘the function P
that pairs n with 51 — 500.”” We could also use functional notation:
P(n) = 5n — 500
which is read “‘P of n equals Sn — 500" or ‘‘the value of P at n is 5n — 500.”
To specify a function completely, you must describe the domain of the
function as well as give the rule. The numbers assigned by the rule then form
the range of the function. '

negative profits,”

Example 1 List the range of
g x—>4+3x— x? x| 443 -2
if the domain D = {—1, 0, 1, 2}.

~1 | 4+3(-)=(-1>=0

Solution In 4 + 3x — x° replace x with each 0] 4+30)-0>=4
member of D to find the members la+3m-17=6
of the range R.

- R=10.4, 6} Answer

[}

4+32)—-22=6

Note that the function g in Example 1 assigns the number 6 to both 1
and 2. In listing the range of g, however, you name 6 only once.

Members of the range of a function are called values of the function. In
Example 1, the values of the function g are 0, 4, and 6. To indicate that the
function g assigns to 2 the value 6, you write

8(2) =6,

which is read ‘g of 2 equals 6 or “‘the value of g at 2 is 6.”” Note that g(2)
is not the product of g and 2. It names the number that g assigns to 2.

Introduction to Functions 379

Brown, Dolciani, Sorgenfrey, and Cole, Algebra: Structure and Method, 2000, page 379.

T L%k % K LOF g B W S W L ELRE L e N RE X nE IJ\.J'L JJJJJJJ J L= R I wE .

domain D =1{0, 1, 2, . . .}.
The range is the set of profits that are possible, including *‘negative profits,’
or losses, 1f too few tickets are sold.
range R = {—500, —495, —490, . . .}.

If we call this profit function P, we can use arrow notation and write
the rule P: n— 51 — 500,
which is read ‘‘the function P that assigns Sn — 500 to n’” or ‘‘the function P
that pairs n with 517 — 500.”" We could also use functional notation:

P(n) = 5n — 500

which 1s read “*P of n equals 5n — 500" or ‘‘the value of P at n is 5n — 500.”

To specify a function completely, you must describe the domain of the
function as well as give the rule. The numbers assigned by the rule then form
the range of the function. '

»

b

Example T List the range of
gix—4+3x—x° x| 4+ 3y — 87
if the domain D = {—1, 0, 1, 2}.

1] 4+3(=1) = (1

. ~
€ o Ho st m Tee A 1 Do LA, DR VEPY MR I N 4 - ANy — N~ =

T L%k % K LOF g B W S W L ELRE L e N RE X nE IJ\.J'L JJJJJJJ J L N g 3

domain D =1{0, 1, 2, . . .}.

»

The range is the set of profits that are possible, including *‘negative profits,’
or losses, 1f too few tickets are sold.
range R = {—500, —495, —490, . . .}.
If we call this profit function P, we can use arrow notation and write

the rule P: n—> 51 — 500,
which is read ‘‘the functigrr P IRAT assSIgns on — SO0t of gtion P
that pairs n with 57 — 5¢0.” We could also use functional notation: |

L P = 51— 500 “

which 1s read “*P of n eq 1.=.500"" o the v: of P at i is. Su— 500.”

To specify a function completely you must descnbe the domam of the
function as well as give the rule. The numbers assigned by the rule then form
the range of the function. '

Example T List the range of
g x—4+ 3 —x° x| 4+ 33—y
if the domain D = {—1, 0, 1, 2}.

1] 4+3(=1) = (1

. ~
€ o Ho st m Tee A 1 Do LA, DR VEPY MR I N 4 - ANy — N~ =

ﬁuﬂwﬂﬁﬂgﬂﬂw i LSRR AT | S Y B 3 lullc\.r I

gix— 4 + 3x — x> v | 4+ 3y — ¥
if the domain D = {—1, 0, I, 2}.

—1 | 443(=1) ~ (-

Solution In 4 + 3x — x~ replace x with each 0] 4+30)—0"=
member of D to find the members (4 - o
of the range R.

= {0, 4, 6} Answer

B3

44+ 302)— 2=

Note that the function g in Example 1 assigns the number 6 to both 1
and 2. In listing the range of g, however, you name 6 only once.

Members of the range of a function are called values of the function. In
Example 1, the values of the function g are 0 4, and 6. To indicate that the
function g assigns to 2 the valugsGTyomrwrite™.

which is read ‘‘g of 2 equals 6™%\Qr_‘‘the value o4 g at 2 is 6.”" Note that g(2)
is not the product of g and 2. It names the number that g assigns to 2.

Introduction to Functions

.56 ADDITAMENTVM AD DISSERT AT

vel Pa fucrit fun&io ipfarum « et x nyp

; ; liug
Deinde etiam obferuaui , quoties ip p I
rantum vbique conflituant gj
Q ab inte

am eximia confequa

«lumfn‘n Px
dimen(ionis.
eundem

terae a4 et X
fionum numerum , toUes
Ex quo, cum . it
es modulares inueniendas, maximg

. - T -
ratione 1pfius 114‘1

}‘Cﬂd'\ rc.
fidia ad acquati

o P 1
are. num forte aliae dentur huiusmod

uabit inueft
&iones ipfius
Has igitur a pri
thodus tales f

P, quae lisdem pracrogatiuis

re imlx‘ilign‘c conftitul , quo fimul me.

tiones inueniendi aperiatur

6 6. Si P eft fun&io ipfarum @ ct x dimenfio-

mum —1I, fea 2 far Gio ipfarum « ct x nullius dimep-
fionis, oftendi fore Px+Qa=o, ,":' ot
mamus igitar efle Q=~—, ¢t qul I
fin&io ipfarum @ etx. At) =——

P D . - 1 n
— 222, Quamobrem P talis effe debebit functio ipfa-

% :
vt dx—"5 per eam multiplicatum cus

rum & Ct

integrabil Hic autem per integrabile non folum
telligo, quod integratione ad quantitatcm algebraic

od ad quadratu

raliter 1nuene

fed etiam ¢ M quameunque reduciur
Si

dx —

15 (]H.xi]ﬂ[.utm: n quam

tur genc

YAl0F

> ductum fit

grabile, ea erit qu
v ; . Px
ipfis P, cius proprietatis, vt fit Q—=-—

§. 7. Fit antem dv—"4° integrabile fi mu

L, integrale enim erit % ¢, defignant® ¢
quantitatem conflantem quamcunque ab « non pendél
tem. Quocirca,, fi f(7-+¢) denotet functioncm quis

[

catur pl.‘l'

cunque

pDE L\"FU\’I'[‘IS CVR
cunque ipfius T\ a fie
fi nmlriplwa[m per f
mi ;

Eft vero f(g

qullius dementionts.

fun&

xime generalis, erit Pz

IS EIVSDEM GENER

quoque dx —

Valor (

SEl oY et O ——"1
V4

10 ‘Ll!xc;mw?‘nc vr,{,r,“m a et x

On
Quamobrem quoties P4 fuerit

finctio nullius dimenfionis ipfarum « et x, toties erit

Q="
§. 8. Sit

jplius a et co 1t

feu dz—Ada—Pdx-
dz—Ada fir inte

effe integrabile.

tionem eucnit i

e e el Simuli rat

denotante X f

e =

fius

et nis
§ 9. Sit Q==—"
amque; erit d¥— Pda

efle quantitas, quae da

reddac integrabile. Fit

ducatur in

ey
P mtegraie

. ; .
liter erit P— —
“ [

auntem

ideoque aequatio modularis 4z

n

Cnim

=Pdx—

O quaecunque
A 7 i
Add——,

tione cum

D 7
Fax— quoquc
1 1

aecedentem opera-
Tum igitur erit Q

one intelli

itur fi fue-

iionem ip-

:71\ —4-¢), vbi vt ante

quamcunque ipfarum @

¢ IUMETUNT quert
1) uit Crgo } L L\

fi I licet
da ; integrabile , {3
€rit - Quare genera-
quoties I CIT

11

d I e
pum @ et &, vt dx—"5 per eam multiplicatum cuadu

integrabile. Hic autem per integrabile non folum in-
telligo, quod integratione ad quantitatem algebrucam,
fed etiam quod ad quadraturam quamcunque reducitur,
Si 1g1tur generaliter inuenerimus quantitatem , in. quim

dx — =% duéum fit integrabile, ea erit quacfitus valo

ipfius P cius proprietatis, vt fit Q—=-— PI.

6. 7. Fit autem dv—=4¢ integrabile fi multip
atr per g, integrale enim erit ¥ _tc, defignuite
quantitatem conftantem..quamcunque ab # non penden-

Quocirca, fif(5 ¢)]denotet functionem qﬂﬂ“‘w
et s i, cung

28

Function application

In C:
e £(3)
e £(3, 4, 5)

29

29

Function application

In C:
e £(3)
e £(3, 4, 5)

Leonhard Euler
—

29

Function application

In C:
e £(3)
e £(3, 4, 5)

Alonzo Church
—————

Function application

In C:
e £(3)
e £(3, 4, 5)

In OCaml:
e f 3

Alonzo Church
————————————

29

29

Function application

In C:
e £(3)
e £(3, 4, 5)

In OCaml:
e f 3
e ((f 3) 4) 5

Alonzo Church
——————————————

29

Function application

In C:
e £(3)
e £(3, 4, 5)

In OCaml:
e f 3
* ((f£ 3) 4) 5
e f 3 45

Alonzo Church
—————————————

29

Function application

In C:
e £(3)
e £(3, 4, 5)

In OCaml:
e f 3
* ((f£ 3) 4) 5
e f 3 45
¢ £(3, 4, 5)

Alonzo Church
————————————

30

Semantics of function application

(fun x -=> x / 2) (3 * 5)

(fun x -=> x / 2) 15

15 / 2

1 1 1

7

30

Semantics of function application

(fun x -=> x / 2) (3 * 5)
evaluate argument
(fun x -=> x / 2) 15 to value

15 / 2

1 1 1

7

30

Semantics of function application

(fun x -=> x / 2) (3 * 5)

(fun x -=> x / 2) 15

15 / 2 substitute function's argument

variable with value being applied to

1 1 1

31

definition:

31

definition: the act of stating a precise
meaning

32

let x
X * X

3 * 5

in

32

local naming

let x = 3 * 5
X * X

32

let

let

X

X X

15 in

evaluate definiendum

(3 * 5)toavalue

32

X

name is only available in the

body of the let, its scope

32

substitute definiens (x)
in body

32

substitute definiens (x)
in body

33

let x
let x
x + 1

3 in
X * 2 1in

33

33

let x

3 in

33

let
let

let
X +

o
I

v

B
) o2
!

in
* 2 1in

* 2 1n

33

let
let
X +

let
X +

let
X +

X

3 in

* 2 1in

X * 2 1in

(x * 2) * 2 in

34

let x
x + 1

34

let
let
x + 1

let x
x + 1

let x

x + 1

34

let in
let x = x * 2 in
x + 1

let
x + 1

o
Il
w
*
N
,5

let x = 6 in
x + 1

Names in the
definiendum refer

outside the scope of
the definition

35

11 1 1

let half = fun x -> x / 2 in
half (3 * 5)

(fun x -=> x / 2) (3 * 5)

(fun x -=> x / 2) 15

15 / 2

35

1 1 v 1

functions are values too

let half = fun x -> x / 2 in
half (3 * 5)

(fun x -=> x / 2) (3 * 5)

(fun x -=> x / 2) 15

15 / 2

35

1 1 v 1

let half = fun x -> x / 2 in

half (3 * 5)

(fun x -=> x / 2) (3 * 5)

(fun x -=> x / 2) 15

15 / 2

evaluate argument

to a value

35

1 1 v 1

let half

= fun x -> x / 2 in

half (3 * 5)

(fun x -=> x / 2) (3 * 5)

(fun x -=> x / 2) 15

15 / 2

substitute function argument

with value being applied to

36

let double
double 5

fun x -> 2 * X 1in

36

let double =
double|l 5

local naming of

a function

fun x ->

2 * x 1in

36

let double = fun x -> 2 * X 1in

double 5

let double x =
double 5

2 * X 1n

let double = fun x -> 2 * X 1in

double 5

let double x = 2 * X in

double 5

“syntactic sugar”:
alternative concrete syntax for

programming convenience

36

37

abstraction:

37

abstraction: the process of viewing a
set of apparently dissimilar things as
instantiating an underlying identity

38

Higher-order functions and functional programming
Polymorphism and generic programming

Handling anomalous conditions

Algebraic data types

Abstract data types and modular programming
Mutable state and imperative programming

Loops and procedural programming

Infinite data structures and lazy programming

Decomposition and object-oriented programming

39

For next time (lab 1)...

Read chapters 1-6 (book.cs51.i0)
Read “On doing well in CS51”

Work on Problem Set 0 (installing
the required course software), due
Monday 11:59pm

Office hours to help you get
things installed listed in CS51
Canvas calendar

40

Euclid of Alexandria

10O

csHh1l

