
John A. Paulson School of Engineering and Applied Sciences
Harvard University

CS51: Abstraction and Design in Computation

1

2: Fundamentals of
functional languages

Now playing:
“Bucephalus Bouncing Ball”
Aphex Twin
Come To Daddy

expression
meaning
structure
value

type
function
definition
abstraction

2

expression: a meaningful combination
of symbols

3

expression: a meaningful combination
of symbols

3

4

meaning: that aspect of expressions
the identity of which preserves truth
under substitution

5

meaning: that aspect of expressions
the identity of which preserves truth
under substitution

5

The indiscernibility of identicals

That A is the same as B
signifies that the one
can be substituted for
the other, salva veritate,
in any proposition
whatever.

– Gottfried Wilhelm Leibniz

6

Gottfried Wilhelm Leibniz

3 + 4 + 5

7

3 + 4 + 5
 ➡ 7 + 5

7

3 + 4 + 5
 ➡ 7 + 5
 ➡ 12

7

structure: the arrangement of parts in
a complex whole

8

structure: the arrangement of parts in
a complex whole

8

let rec gcd_euclid a b =
 if b = 0
 then a
 else gcd_euclid b (a mod b) ;;

9

let rec gcd_euclid a b = if b = 0
then a else gcd_euclid b (a mod b) ;;

10

3 + 4 * 5

11

3 + 4 * 5
 ➡ 7 * 5

11

3 + 4 * 5
 ➡ 7 * 5
 ➡ 35

11

3 + 4 * 5
 ➡ 7 * 5
 ➡ 35

11

3 + 4 * 5
 ➡ 7 * 5
 ➡ 35

11

3 4

5+

*

3 + 4 * 5
 ➡ 7 * 5
 ➡ 35

11

3

4 5

+

*

3 4

5+

*

3 + 4 * 5
 ➡ 7 * 5
 ➡ 35

11

3 + 4 * 5
 ➡ 3 + 20
 ➡ 23

3

4 5

+

*

3 4

5+

*

12

3

4 5

+

*

3 4

5+

*

abstract syntax

3 + 4 * 5 ;;  
- : int = 23

(3 + 4) * 5 ;;  
- : int = 60

12

3

4 5

+

*

3 4

5+

*

abstract syntaxconcrete syntax

3 + 4 * 5 ;;  
- : int = 23

(3 + 4) * 5 ;;  
- : int = 35

13

3

4 5

+

*

3 4

5+

*

abstract syntaxconcrete syntax

value: a result determined by
calculation or measurement

14

value: a result determined by
calculation or measurement

14

35 an integer value
true a boolean value
fun x -> x + 1 a function value

15

16

3 4

5+

*

57

*
35

(3 + 4) * 5 ;;  
- : int = 35

➡ ➡

type: a set of things having traits or
characteristics in common that
distinguish them as a group

17

type: a set of things having traits or
characteristics in common that
distinguish them as a group

17

18

#include <stdio.h>

#include <stdbool.h>

int main() {

 int name = "Gold Hill";

 int est = 1859;

 bool us = true;

 int sum = name + est + us;

 printf("Value : %d\n", sum);

}

19 find this code in: joke.c

OCaml is a typed language

Expressions have types
Statically typed:

• type of an expression can be determined just by looking
at the code

Strongly typed:
• interpreter enforces type abstraction
• cannot use an integer as a record, function, string, etc.

Implicitly typed:
• interpreter can determine the types of most expressions

on its own

20

3 + 4 * 5 ;;
- : int = 23

21

3 + 4 * 5 ;;
- : int = 23

"three" + 4 * 5 ;;
Error: This expression has type string
but an expression was expected of type
int

21

3 + 4 * 5 ;;
- : int = 23

"three" + 4 * 5 ;;
Error: This expression has type string
but an expression was expected of type
int

3.0 + 4.0 ;;
Error: This expression has type float but
an expression was expected of type int

21

3 + 4 * 5 ;;
- : int = 23

"three" + 4 * 5 ;;
Error: This expression has type string
but an expression was expected of type
int

3.0 + 4.0 ;;
Error: This expression has type float but
an expression was expected of type int

(+) ;;
- : int -> int -> int = <fun>

21

3 + 4 * 5 ;;  
- : int = 23

"three" + 4 * 5 ;;  
Error: This expression has type string
but an expression was expected of type
int

3.0 + 4.0 ;;  
Error: This expression has type float but
an expression was expected of type int

(+) ;;  
- : int -> int -> int = <fun>

3.0 +. 4.0 ;;  
- : float = 7.

21

function: a determinate mapping from
one or more inputs to an output

22

function: a determinate mapping from
one or more inputs to an output

22

fun x -> 2 * x

23

fun x -> 2 * x

23

anonymous function

fun x -> 2 * x

23

introduces a variable
naming the argument

fun x -> 2 * x

23

uses the argument by
invoking its name

fun x -> 2 * x

fun x -> if x < 3 then x else x * x

23

Function application

In C:
• f(3)

• f(3, 4, 5)

24

25

Functions
Objective To define a function by using equations.

Tickets to the senior class play cost $5. Production expenses are $500. The
class's profit, p will depend on 11, the number of tickets sold.

profit = $5 . (number of tickets) - $500 or p = 511 - 500
The equation p = 511 500 describes a correspondence between the number of
tickets sold and the profit. This correspondence is a function whose domain is
the set of tickets that could possibly be sold.

domain D {O, I, 2, ... }.

The range is the set of profits that are possible, including "negative profits,"
or losses, if too few tickets are sold.

range R = {-500, -495, -490, ...}.
If we call this profit function p. we can use arrow notation and write

the rule P: 11 -7 511 - 500,

which is read "the function P that assigns 511 - 500 to II" or "the function P
that pairs 11 with 511 - 500." We could also use functional notation:

P(I1) = 511 500
which is read "P of 11 equals 511 - 500" or "the value of P at 11 is 511 - 500."

To specify a function completely, you must describe the domain of the
function as well as give the rule. The numbers assigned by the rule then form
the range of the function.

Example 1 List the range of
g: x -7 4 + 3x - x2

if the domain D = {-I, 0, I, 2}.

Solution In 4 + 3x - x2 replace x with each
member of D to find the members
of the range R.
:. R = {O, 4, 6} Answer

x 4 + 3x -./

-I 4 + 3(-1) (-1)2 = 0

0 4 + 3(0) - 02 = 4

I 4 + 3(1) - 12 = 6

2 4 + 3(2) - 22 = 6

Note that the function g in Example I assigns the number 6 to both I
and 2. In listing the range of g, however, you name 6 only once.

Members of the range of a function are called values of the function. In
Example I, the values of the function g are 0, 4, and 6. To indicate that the
function g assigns to 2 the value 6, you write

g(2) = 6,
which is read "g of 2 equals 6" or "the value of g at 2 is 6." Note that g(2)
is 110t the product of g and 2. It names the number that g assigns to 2.

Introduction to Functions 379

Brown, Dolciani, Sorgenfrey, and Cole, Algebra: Structure and Method, 2000, page 379.

26

Functions
Objective To define a function by using equations.

Tickets to the senior class play cost $5. Production expenses are $500. The
class's profit, p will depend on 11, the number of tickets sold.

profit = $5 . (number of tickets) - $500 or p = 511 - 500
The equation p = 511 500 describes a correspondence between the number of
tickets sold and the profit. This correspondence is a function whose domain is
the set of tickets that could possibly be sold.

domain D {O, I, 2, ... }.

The range is the set of profits that are possible, including "negative profits,"
or losses, if too few tickets are sold.

range R = {-500, -495, -490, ...}.
If we call this profit function p. we can use arrow notation and write

the rule P: 11 -7 511 - 500,

which is read "the function P that assigns 511 - 500 to II" or "the function P
that pairs 11 with 511 - 500." We could also use functional notation:

P(I1) = 511 500
which is read "P of 11 equals 511 - 500" or "the value of P at 11 is 511 - 500."

To specify a function completely, you must describe the domain of the
function as well as give the rule. The numbers assigned by the rule then form
the range of the function.

Example 1 List the range of
g: x -7 4 + 3x - x2

if the domain D = {-I, 0, I, 2}.

Solution In 4 + 3x - x2 replace x with each
member of D to find the members
of the range R.
:. R = {O, 4, 6} Answer

x 4 + 3x -./

-I 4 + 3(-1) (-1)2 = 0

0 4 + 3(0) - 02 = 4

I 4 + 3(1) - 12 = 6

2 4 + 3(2) - 22 = 6

Note that the function g in Example I assigns the number 6 to both I
and 2. In listing the range of g, however, you name 6 only once.

Members of the range of a function are called values of the function. In
Example I, the values of the function g are 0, 4, and 6. To indicate that the
function g assigns to 2 the value 6, you write

g(2) = 6,
which is read "g of 2 equals 6" or "the value of g at 2 is 6." Note that g(2)
is 110t the product of g and 2. It names the number that g assigns to 2.

Introduction to Functions 379

26

Functions
Objective To define a function by using equations.

Tickets to the senior class play cost $5. Production expenses are $500. The
class's profit, p will depend on 11, the number of tickets sold.

profit = $5 . (number of tickets) - $500 or p = 511 - 500
The equation p = 511 500 describes a correspondence between the number of
tickets sold and the profit. This correspondence is a function whose domain is
the set of tickets that could possibly be sold.

domain D {O, I, 2, ... }.

The range is the set of profits that are possible, including "negative profits,"
or losses, if too few tickets are sold.

range R = {-500, -495, -490, ...}.
If we call this profit function p. we can use arrow notation and write

the rule P: 11 -7 511 - 500,

which is read "the function P that assigns 511 - 500 to II" or "the function P
that pairs 11 with 511 - 500." We could also use functional notation:

P(I1) = 511 500
which is read "P of 11 equals 511 - 500" or "the value of P at 11 is 511 - 500."

To specify a function completely, you must describe the domain of the
function as well as give the rule. The numbers assigned by the rule then form
the range of the function.

Example 1 List the range of
g: x -7 4 + 3x - x2

if the domain D = {-I, 0, I, 2}.

Solution In 4 + 3x - x2 replace x with each
member of D to find the members
of the range R.
:. R = {O, 4, 6} Answer

x 4 + 3x -./

-I 4 + 3(-1) (-1)2 = 0

0 4 + 3(0) - 02 = 4

I 4 + 3(1) - 12 = 6

2 4 + 3(2) - 22 = 6

Note that the function g in Example I assigns the number 6 to both I
and 2. In listing the range of g, however, you name 6 only once.

Members of the range of a function are called values of the function. In
Example I, the values of the function g are 0, 4, and 6. To indicate that the
function g assigns to 2 the value 6, you write

g(2) = 6,
which is read "g of 2 equals 6" or "the value of g at 2 is 6." Note that g(2)
is 110t the product of g and 2. It names the number that g assigns to 2.

Introduction to Functions 379

27

Functions
Objective To define a function by using equations.

Tickets to the senior class play cost $5. Production expenses are $500. The
class's profit, p will depend on 11, the number of tickets sold.

profit = $5 . (number of tickets) - $500 or p = 511 - 500
The equation p = 511 500 describes a correspondence between the number of
tickets sold and the profit. This correspondence is a function whose domain is
the set of tickets that could possibly be sold.

domain D {O, I, 2, ... }.

The range is the set of profits that are possible, including "negative profits,"
or losses, if too few tickets are sold.

range R = {-500, -495, -490, ...}.
If we call this profit function p. we can use arrow notation and write

the rule P: 11 -7 511 - 500,

which is read "the function P that assigns 511 - 500 to II" or "the function P
that pairs 11 with 511 - 500." We could also use functional notation:

P(I1) = 511 500
which is read "P of 11 equals 511 - 500" or "the value of P at 11 is 511 - 500."

To specify a function completely, you must describe the domain of the
function as well as give the rule. The numbers assigned by the rule then form
the range of the function.

Example 1 List the range of
g: x -7 4 + 3x - x2

if the domain D = {-I, 0, I, 2}.

Solution In 4 + 3x - x2 replace x with each
member of D to find the members
of the range R.
:. R = {O, 4, 6} Answer

x 4 + 3x -./

-I 4 + 3(-1) (-1)2 = 0

0 4 + 3(0) - 02 = 4

I 4 + 3(1) - 12 = 6

2 4 + 3(2) - 22 = 6

Note that the function g in Example I assigns the number 6 to both I
and 2. In listing the range of g, however, you name 6 only once.

Members of the range of a function are called values of the function. In
Example I, the values of the function g are 0, 4, and 6. To indicate that the
function g assigns to 2 the value 6, you write

g(2) = 6,
which is read "g of 2 equals 6" or "the value of g at 2 is 6." Note that g(2)
is 110t the product of g and 2. It names the number that g assigns to 2.

Introduction to Functions 379

28

28

Function application

In C:
• f(3)

• f(3, 4, 5)

29

Function application

In C:
• f(3)

• f(3, 4, 5)

29

Leonhard Euler

Function application

In C:
• f(3)

• f(3, 4, 5)

29

Leonhard Euler

Alonzo Church

Function application

In C:
• f(3)

• f(3, 4, 5)

In OCaml:
• f 3

29

Leonhard Euler

Alonzo Church

Function application

In C:
• f(3)

• f(3, 4, 5)

In OCaml:
• f 3

• ((f 3) 4) 5

29

Leonhard Euler

Alonzo Church

Function application

In C:
• f(3)

• f(3, 4, 5)

In OCaml:
• f 3

• ((f 3) 4) 5

• f 3 4 5

29

Leonhard Euler

Alonzo Church

Function application

In C:
• f(3)

• f(3, 4, 5)

In OCaml:
• f 3

• ((f 3) 4) 5

• f 3 4 5

• f(3, 4, 5)

29

Leonhard Euler

Alonzo Church

Semantics of function application

(fun x -> x / 2) (3 * 5)

(fun x -> x / 2) 15

15 / 2

7

30

➡
➡
➡

Semantics of function application

(fun x -> x / 2) (3 * 5)

(fun x -> x / 2) 15

15 / 2

7

30

evaluate argument
to value➡

➡
➡

Semantics of function application

(fun x -> x / 2) (3 * 5)

(fun x -> x / 2) 15

15 / 2

7

30

substitute function's argument
variable with value being applied to

➡
➡
➡

definition: the act of stating a precise
meaning

31

definition: the act of stating a precise
meaning

31

let x = 3 * 5 in  
x * x

32

let x = 3 * 5 in  
x * x

32

local naming

let x = 3 * 5 in  
x * x

let x = 15 in  
x * x

32

evaluate definiendum
(3 * 5) to a value➡

let x = 3 * 5 in  
x * x

let x = 15 in  
x * x

32

➡ name is only available in the
body of the let, its scope

let x = 3 * 5 in  
x * x

let x = 15 in  
x * x

15 * 15

32

substitute definiens (x)
in body

➡

➡

let x = 3 * 5 in  
x * x

let x = 15 in  
x * x

15 * 15

225

32

substitute definiens (x)
in body

➡

➡
➡

let x = 3 in  
let x = x * 2 in  
x + 1

33

let x = 3 in  
let x = x * 2 in  
x + 1

33

let x = 3 in  
let x = x * 2 in  
x + 1

33

let x = 3 in  
let x = x * 2 in  
x + 1

let x = x * 2 in  
x + 1

33

➡

let x = 3 in  
let x = x * 2 in  
x + 1

let x = x * 2 in  
x + 1

let x = (x * 2) * 2 in  
x + 1

33

➡

➡

➡

let x = 3 in  
let x = x * 2 in  
x + 1

let x = 3 * 2 in  
x + 1

let x = 6 in  
x + 1

6 + 1

7

34

➡

➡

➡
➡

let x = 3 in  
let x = x * 2 in  
x + 1

let x = 3 * 2 in  
x + 1

let x = 6 in  
x + 1

6 + 1

7

34

➡

➡

➡
➡

let x = 3 in  
let x = x * 2 in  
x + 1

let x = 3 * 2 in  
x + 1

let x = 6 in  
x + 1

6 + 1

7

34

Names in the
definiendum refer
outside the scope of

the definition
➡

➡

➡
➡

let half = fun x -> x / 2 in  
half (3 * 5)

(fun x -> x / 2) (3 * 5)

(fun x -> x / 2) 15

15 / 2

7

35

➡
➡
➡
➡

let half = fun x -> x / 2 in  
half (3 * 5)

(fun x -> x / 2) (3 * 5)

(fun x -> x / 2) 15

15 / 2

7

35

functions are values too

➡
➡
➡
➡

let half = fun x -> x / 2 in  
half (3 * 5)

(fun x -> x / 2) (3 * 5)

(fun x -> x / 2) 15

15 / 2

7

35

evaluate argument
to a value

➡
➡
➡
➡

let half = fun x -> x / 2 in  
half (3 * 5)

(fun x -> x / 2) (3 * 5)

(fun x -> x / 2) 15

15 / 2

7

35

substitute function argument
with value being applied to

➡
➡
➡
➡

let double = fun x -> 2 * x in  

double 5

36

let double = fun x -> 2 * x in  

double 5

36

local naming of
a function

let double = fun x -> 2 * x in  

double 5

let double x = 2 * x in  

double 5

36

let double = fun x -> 2 * x in  

double 5

let double x = 2 * x in  

double 5

36

“syntactic sugar”:
alternative concrete syntax for

programming convenience

abstraction: the process of viewing a
set of apparently dissimilar things as
instantiating an underlying identity

37

abstraction: the process of viewing a
set of apparently dissimilar things as
instantiating an underlying identity

37

Higher-order functions and functional programming
Polymorphism and generic programming
Handling anomalous conditions
Algebraic data types
Abstract data types and modular programming
Mutable state and imperative programming
Loops and procedural programming
Infinite data structures and lazy programming
Decomposition and object-oriented programming

38

For next time (lab 1)...

Read chapters 1–6 (book.cs51.io)
Read “On doing well in CS51”
Work on Problem Set 0 (installing
the required course software), due
Monday 11:59pm

Office hours to help you get
things installed listed in CS51
Canvas calendar

39

40

Euclid of Alexandria c
s
5
1
.
i
o

