
John A. Paulson School of Engineering and Applied Sciences
Harvard University

CS51: Abstraction and Design in Computation

1

Introduction

Now playing:
“Jewel”
Flume
Hi This Is Flume

What CS51 is about

2

engineering: producing (software) solutions with
desirable properties along multiple criteria

design: selection among alternative approaches to
engineering a (software) artifact

abstraction: the process of viewing a set of
apparently dissimilar things as instantiating
an underlying identity; enabling the
alternatives necessary for design

3

4

5

6

An example abstraction

print_int 2; print_newline ();

print_int 3; print_newline ();

print_int 4; print_newline ();

print_int 5; print_newline ();

print_int 6; print_newline ();

print_int 7; print_newline ();

print_int 8; print_newline ()

;;  

7

An example abstraction

print_int 2; print_newline ();

print_int 3; print_newline ();

print_int 4; print_newline ();

print_int 5; print_newline ();

print_int 6; print_newline ();

print_int 7; print_newline ();

print_int 8; print_newline ()

;;  

7

An example abstraction

print_int 2; print_newline ();

print_int 3; print_newline ();

print_int 4; print_newline ();

print_int 5; print_newline ();

print_int 6; print_newline ();

print_int 7; print_newline ();

print_int 8; print_newline ()

;;  

8

from u/KroutontheSlasher
on r/badcode, 1/22/21

An example abstraction:
the state variable

print_int 2; print_newline ();

print_int 3; print_newline ();

print_int 4; print_newline ();

print_int 5; print_newline ();

print_int 6; print_newline ();

print_int 7; print_newline ();

print_int 8; print_newline ()

;;  

 print_int x; print_newline ()

9

An example abstraction:
the state variable and the loop

print_int 2; print_newline ();

print_int 3; print_newline ();

print_int 4; print_newline ();

print_int 5; print_newline ();

print_int 6; print_newline ();

print_int 7; print_newline ();

print_int 8; print_newline ()

;;  

for x in 2 to 8 do

 print_int x; print_newline ()

done ;;

10

11

Alan Turing

12

28

20

13

28

20

14

28

20

15

28

20

15

28

20

#include <stdio.h>

#define MIN(a, b) ((a) < (b) ? (a) : (b))

unsigned gcd_down(unsigned a, unsigned b)

{

 unsigned guess;

 for (guess=MIN(a, b); guess>1; guess--) {

 if ((a % guess == 0) && (b % guess == 0))

 break;

 }

 return guess;

}

int main()

{

 printf("gcd(10, 15) is %d\n", gcd_down(10,15));

 printf("gcd(5, 19) is %d\n", gcd_down(5,19));

 printf("gcd(20, 10) is %d\n", gcd_down(20,10));

}

16 find this code in: gcd.c

17

This is not CS50.

17

#include <stdio.h>

#define MIN(a, b) ((a) < (b) ? (a) : (b))

unsigned gcd_down(unsigned a, unsigned b)

{

 unsigned guess;

 for (guess=MIN(a, b); guess>1; guess--) {

 if ((a % guess == 0) && (b % guess == 0))

 break;

 }

 return guess;

}

int main()

{

 printf("gcd(10, 15) is %d\n", gcd_down(10,15));

 printf("gcd(5, 19) is %d\n", gcd_down(5,19));

 printf("gcd(20, 10) is %d\n", gcd_down(20,10));

}

18 find this code in: gcd.c

let gcd_down a b =

 let guess = ref (min a b) in

 while (a mod !guess <> 0) || (b mod !guess <> 0) do

 guess := !guess - 1

 done;

 !guess ;;

19 find this code in: gcd_versions.ml

20

Alonzo Church

let gcd_func a b =

 let rec downfrom guess =

 if (a mod guess <> 0) || (b mod guess <> 0) then

 downfrom (guess - 1)

 else guess in

 downfrom (min a b) ;;

21 find this code in: gcd_versions.ml

22

Euclid of Alexandria

22

T. L. Heath, translator. 1908. The Thirteen books of Euclid's Elements.
Cambridge: Cambridge University Press, page 298.

Euclid of Alexandria

23

28

20

24

28

20

25

8

20

26

8

20

27

8

12

28

8

12

29

8

4

30

8

4

31

4

4

32

4

4

33

28

20

34

28

20

35

28

20

36

28

20

let rec gcd_euclid_0 a b =

 if a < b

 then gcd_euclid_0 b a

 else if a = b

 then a

 else gcd_euclid_0 b (a - b) ;;

37 find this code in: gcd_versions.ml

let rec gcd_euclid_1 a b =

 if a < b

 then gcd_euclid_1 b a

 else if b = 0

 then a

 else gcd_euclid_1 b (a - b) ;;

38 find this code in: gcd_versions.ml

let rec gcd_euclid_2 a b =

 if a < b

 then gcd_euclid_2 b a

 else if b = 0

 then a

 else gcd_euclid_2 b (a mod b) ;;

39 find this code in: gcd_versions.ml

let rec gcd_euclid a b =

 if a < b

 then gcd_euclid b a

 else if b = 0

 then a

 else gcd_euclid b (a mod b) ;;

40 find this code in: gcd_versions.ml

let rec gcd_euclid a b =

 if b = 0

 then a

 else gcd_euclid b (a mod b) ;;

41 find this code in: gcd_versions.ml

let rec gcd_euclid a b =

 if b = 0

 then a

 else gcd_euclid b (a mod b) ;;

41

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

C OCaml
bytecode

OCaml
native code

14

38

12

4M
9M

2M

GCD down GCD Euclid

GCD of 3,619,997 and 6,569,562
(100 trials, in microseconds)

find this code in: gcd_versions.ml

There is more
than one way to
solve a problem.

42

There is more
than one way to
solve a problem.

Some ways are
better than others.

42

There is more
than one way to
solve a problem.

Some ways are
better than others.

42

succinctness
efficiency
readability
maintainability
provability
testability

There is more
than one way to
solve a problem.

Some ways are
better than others.

42

succinctness
efficiency
readability
maintainability
provability
testability
beauty

43

let rec gcd_euclid a b =

 if b = 0

 then a

 else gcd_euclid b (a mod b) ;;

#include <stdio.h>

#define MIN(a, b) ((a) < (b) ? (a) : (b))

unsigned gcd_down(unsigned a, unsigned b)

{

 unsigned guess;

 for (guess=MIN(a, b); guess>1; guess--) {

 if ((a % guess == 0) && (b % guess == 0))

 break;

 }

 return guess;

}

vs.

find this code in: gcd_versions.ml

What CS51 teaches

1. Software development practice
2. Engineering design principles
3. Fundamental notions of computation
4. Software design concepts

44

1. Software development practice

Managing a development system
Version control for tracking and collaboration
Compiling complex projects
Unit testing
Invariants

45

2. Engineering design principles

engineering: producing (software) solutions with
desirable properties along multiple criteria

46

2. Engineering design principles

engineering: producing (software) solutions with
desirable properties along multiple criteria

46

succinctness

efficiency

readability

maintainability

provability

testability

beauty

There is more
than one way to
solve a problem.

Some ways are
better than others.

2. Engineering design principles

Edict of intention:
Express your intentions well.

Edict of irredundancy:
Never write the same code twice.

Edict of decomposition:
Carve software at its joints.

Edict of prevention:
Make the illegal inexpressible.

Edict of compartmentalization:
Limit information to those with a need to know.

47

3. Fundamental notions of computation

Expressions and the linguistics of programming
Values, types, and type inference
Naming and scope
Semantics

substitution, environment
Complexity

order, recurrences

48

4. Software design concepts

Higher-order functions and functional programming
Polymorphism and generic programming
Handling anomalous conditions
Algebraic data types
Abstract data types and modular programming
Mutable state and imperative programming
Loops and procedural programming
Infinite data structures and lazy programming
Decomposition and object-oriented programming

49

The language: OCaml

Paradigms:
first-order and higher-order
functional programming
imperative programming
generic programming
lazy programming
object-oriented
programming
concurrent programming

Concepts:
substitution & environment
models of evaluation
static types, type inference,
polymorphism
abstract data types,
interfaces, modules
encapsulation, classes,
subtyping, inheritance
parallelism, concurrency,
synchronization

50

OCaml impact

51

F# (Microsoft)

Reason (Facebook)

Swift (Apple)

Rust

Elm

Haskell

...and many others

52

US average salary by technology,
StackOverflow Developer Survey 2018

Erlang
Scala

OCaml
Clojure

Go
Groovy

Objective-C
F#

Hack
Perl

Kotlin
Rust

Swift
TypeScript
Bash/Shell

CoffeeScript
Delphi/ObjectPascal

Haskell
Java
Lua

Ruby
Julia

C
JavaScript

Python

90,000 97,500 105,000 112,500 120,000

52

US average salary by technology,
StackOverflow Developer Survey 2018

Erlang
Scala

OCaml
Clojure

Go
Groovy

Objective-C
F#

Hack
Perl

Kotlin
Rust

Swift
TypeScript
Bash/Shell

CoffeeScript
Delphi/ObjectPascal

Haskell
Java
Lua

Ruby
Julia

C
JavaScript

Python

90,000 97,500 105,000 112,500 120,000

OCaml

Other CS courses

53

CS51
CS50

CS20 CS121
CS124

CS61

1 fall 1 spring 2 fall 2 spring

Course structure

54

Video: streamed and on web site
Guest lectures

Lectures

Course structure

55

Pair programming labs
Most TTh starting February 2
Northwest Building basement
Two lab slots: 10:30–11:45, 4:30–5:45
Virtual quiz, Sundays

Lectures

Labs

Course structure

56

Readings (book.cs51.io) to prepare for labs
Post-lab peer- and self-evaluation surveys every few labs

Lectures

Labs

Readings

Surveys

Course structure

57

Eight problem sets
Due Wednesdays (typically)

Lectures

Labs

Readings

Surveys

Problem
Sets

Course structure

58

Code reviews Fridays
Critique of code from labs
Prepare for problem sets

Lectures

Labs Code
Review

Readings

Surveys

Problem
Sets

Course structure

59

Additional sources of help
online and in office hours
(Saturday–Tuesday pm)

Lectures

Labs Code
Review

Readings

Ed Office
Hours

Surveys

Problem
Sets

Course structure

60

Lectures

Labs Code
Review Project

Readings

Ed Office
Hours Exams

Surveys

Problem
Sets

Culminative project
Two evening exams

(3/8, 4/28)

CS51 Coffee Klatch

61

Wednesdays 4:30–5:30
Sign up at
http://url.cs51.io/coffee

Jordan Barkin
head TF

Olivia Graham
head TF

Head staff

62

Ahan Malhotra
infrastructure guru

63

63

Collaboration policy

Problem sets are done alone or in pairs
Labs are done in pairs and fours
Final project is done alone (with approved exceptions)
Talking together about problem sets and project is
encouraged: understanding concepts, help finding bugs
Asking for or acquiring solutions from others or
revealing solutions to others is expressly disallowed
When in doubt, ask me or a TF

64

Logistics

Extra help
Grading
Submitting coursework
Absence policy
Late policy
Laptop policy

Collaboration and academic
integrity
Auditing
Simultaneous enrollment
Course climate
Mental health
Accommodations for
special requirements

65

http://cs51.io

For next time...

Read the syllabus
Read chapters 1-4 (book.cs51.io)
Section for labs (Crimson cart) and for code
review (sectioning survey at section.cs51.io)
Work on Problem Set 0 (installing the required
course software), due Monday 11:59pm

Office hours to help you get things installed
will be listed in CS51 Canvas calendar

66

67

Euclid of Alexandria c
s
5
1
.
i
o

